login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of f-vectors for simplicial complexes of dimension at most 3 on at most n-1 vertices.
3

%I #14 Sep 18 2012 16:44:37

%S 2,3,5,10,26,95,457,2246,9705,35926,115688,331201,859587,2054860,

%T 4582126,9627831,19217260,36679253,67308375,119286676,204940824,

%U 342425909,557944719,888630900,1386246251,2121866592,3191757298

%N Number of f-vectors for simplicial complexes of dimension at most 3 on at most n-1 vertices.

%D D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3 (p. 743).

%D S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.

%F a(n+1) = (12*n^10 -112*n^9 +351*n^8 -132*n^7 +378*n^6 -2856*n^5 +4839*n^4 +56812*n^3 -5580*n^2 +309168*n +725760)/362880 fits terms up to 3191757298. [_Frank Ellermann_]

%F Empirical G.f.: -x*(x^10 -11*x^9 +69*x^8 -130*x^7 +380*x^6 -400*x^5 +356*x^4 -210*x^3 +82*x^2 -19*x +2)/(x -1)^11. [_Colin Barker_, Sep 18 2012]

%Y Cf. A011827, A007695.

%K nonn

%O 1,1

%A Svante Linusson (linusson(AT)math.kth.se)