The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135961 G.f.: A(x) = Sum_{n>=0} x^n/(1 - Fibonacci(n)*x). 5
 1, 1, 2, 3, 5, 10, 25, 79, 318, 1637, 10753, 89872, 955537, 12930173, 222618066, 4874855543, 135781292309, 4811103270054, 216847500834513, 12432143862756779, 906625645142897790, 84102571511631809865 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..140 V. Kotesovec, Interesting asymptotic formulas for binomial sums, Jun 09 2013 FORMULA a(n) = Sum_{k=0..n} Fibonacci(k)^(n-k). a(n) ~ c * ((1+sqrt(5))/2)^(n^2/4) / 5^(n/4), where c = Sum_{k=-Infinity..Infinity} 5^(k/2)*((1+sqrt(5))/2)^(-k^2) = 3.5769727481316948565395...(see A219781) if n is even and c = Sum_{k=-Infinity..Infinity} 5^((k+1/2)/2)*((1+sqrt(5))/2)^(-(k+1/2)^2) = 3.5769727390073366345992... if n is odd. - Vaclav Kotesovec, Nov 29 2012 EXAMPLE A(x) = 1 + x/(1-x) + x^2/(1-x) + x^3/(1-2x) + x^4/(1-3x) + x^5/(1-5x) +... MATHEMATICA Flatten[{1, Table[Sum[Fibonacci[k]^(n-k), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 29 2012 *) PROG (PARI) a(n)=sum(k=0, n, fibonacci(k)^(n-k)) CROSSREFS Cf. A000045, A219781, A187780, A135741. Sequence in context: A011827 A260304 A259438 * A173253 A011828 A011829 Adjacent sequences:  A135958 A135959 A135960 * A135962 A135963 A135964 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 09 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 01:32 EDT 2020. Contains 337244 sequences. (Running on oeis4.)