login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = Sum_{n>=0} x^n/(1 - Fibonacci(n)*x).
5

%I #20 Sep 12 2015 11:00:19

%S 1,1,2,3,5,10,25,79,318,1637,10753,89872,955537,12930173,222618066,

%T 4874855543,135781292309,4811103270054,216847500834513,

%U 12432143862756779,906625645142897790,84102571511631809865

%N G.f.: A(x) = Sum_{n>=0} x^n/(1 - Fibonacci(n)*x).

%H Vincenzo Librandi, <a href="/A135961/b135961.txt">Table of n, a(n) for n = 0..140</a>

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Interesting asymptotic formulas for binomial sums</a>, Jun 09 2013

%F a(n) = Sum_{k=0..n} Fibonacci(k)^(n-k).

%F a(n) ~ c * ((1+sqrt(5))/2)^(n^2/4) / 5^(n/4), where c = Sum_{k=-Infinity..Infinity} 5^(k/2)*((1+sqrt(5))/2)^(-k^2) = 3.5769727481316948565395...(see A219781) if n is even and c = Sum_{k=-Infinity..Infinity} 5^((k+1/2)/2)*((1+sqrt(5))/2)^(-(k+1/2)^2) = 3.5769727390073366345992... if n is odd. - _Vaclav Kotesovec_, Nov 29 2012

%e A(x) = 1 + x/(1-x) + x^2/(1-x) + x^3/(1-2x) + x^4/(1-3x) + x^5/(1-5x) +...

%t Flatten[{1, Table[Sum[Fibonacci[k]^(n-k), {k, 0, n}], {n, 1, 20}]}] (* _Vaclav Kotesovec_, Nov 29 2012 *)

%o (PARI) a(n)=sum(k=0, n, fibonacci(k)^(n-k))

%Y Cf. A000045, A219781, A187780, A135741.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Dec 09 2007