login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260304
a(n) = 5*a(n-1) - 5*a(n-2) for n>1, a(0)=2, a(1)=3.
0
2, 3, 5, 10, 25, 75, 250, 875, 3125, 11250, 40625, 146875, 531250, 1921875, 6953125, 25156250, 91015625, 329296875, 1191406250, 4310546875, 15595703125, 56425781250, 204150390625, 738623046875, 2672363281250, 9668701171875, 34981689453125, 126564941406250
OFFSET
0,1
COMMENTS
Lim_{n -> infinity} a(n + 1)/a(n) = 2 + phi = 3.6180339887..., where phi is the golden ratio (A001622).
FORMULA
G.f.: (2 - 7*x)/(1 - 5*x + 5*x^2).
a(n) = ((5 + 2*sqrt(5))*((5 - sqrt(5))/2)^n + (5 - 2*sqrt(5))*((5 + sqrt(5))/2)^n)/5.
a(n) = 2*A030191(n) - 7*A030191(n-1). - Bruno Berselli, Nov 23 2015
MATHEMATICA
Table[((5 + 2 Sqrt[5]) ((5 - Sqrt[5])/2)^n + (5 - 2 Sqrt[5]) ((5 + Sqrt[5])/2)^n)/5, {n, 0, 30}]
RecurrenceTable[{a[0] == 2, a[1] == 3, a[n] == 5 a[n - 1] - 5 a[n - 2]}, a, {n, 0, 30}] (* Bruno Berselli, Nov 23 2015 *)
PROG
(Magma) [n le 2 select n+1 else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 23 2015
(PARI) a(n)=([0, 1; -5, 5]^n*[2; 3])[1, 1] \\ Charles R Greathouse IV, Jul 26 2016
CROSSREFS
Cf. A093129: initial values 1,2; A081567: initial values 1,3.
Sequence in context: A050837 A107578 A011827 * A259438 A135961 A173253
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Nov 21 2015
EXTENSIONS
Edited by Bruno Berselli, Nov 23 2015
STATUS
approved