Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 08 2022 08:46:13
%S 2,3,5,10,25,75,250,875,3125,11250,40625,146875,531250,1921875,
%T 6953125,25156250,91015625,329296875,1191406250,4310546875,
%U 15595703125,56425781250,204150390625,738623046875,2672363281250,9668701171875,34981689453125,126564941406250
%N a(n) = 5*a(n-1) - 5*a(n-2) for n>1, a(0)=2, a(1)=3.
%C Lim_{n -> infinity} a(n + 1)/a(n) = 2 + phi = 3.6180339887..., where phi is the golden ratio (A001622).
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-5).
%F G.f.: (2 - 7*x)/(1 - 5*x + 5*x^2).
%F a(n) = ((5 + 2*sqrt(5))*((5 - sqrt(5))/2)^n + (5 - 2*sqrt(5))*((5 + sqrt(5))/2)^n)/5.
%F a(n) = 2*A030191(n) - 7*A030191(n-1). - _Bruno Berselli_, Nov 23 2015
%t Table[((5 + 2 Sqrt[5]) ((5 - Sqrt[5])/2)^n + (5 - 2 Sqrt[5]) ((5 + Sqrt[5])/2)^n)/5, {n, 0, 30}]
%t RecurrenceTable[{a[0] == 2, a[1] == 3, a[n] == 5 a[n - 1] - 5 a[n - 2]}, a, {n, 0, 30}] (* _Bruno Berselli_, Nov 23 2015 *)
%o (Magma) [n le 2 select n+1 else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 23 2015
%o (PARI) a(n)=([0,1; -5,5]^n*[2;3])[1,1] \\ _Charles R Greathouse IV_, Jul 26 2016
%Y Cf. A020876, A030191, A098111.
%Y Cf. A093129: initial values 1,2; A081567: initial values 1,3.
%K nonn,easy
%O 0,1
%A _Ilya Gutkovskiy_, Nov 21 2015
%E Edited by _Bruno Berselli_, Nov 23 2015