login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162651
Numbers which can be expressed as the product of 3 positive integers in arithmetic progression.
2
1, 6, 8, 15, 24, 27, 28, 45, 48, 60, 64, 66, 80, 91, 105, 120, 125, 153, 162, 168, 190, 192, 210, 216, 224, 231, 276, 280, 288, 312, 315, 325, 336, 343, 360, 378, 384, 405, 435, 440, 480, 496, 504, 510, 512, 528, 561, 585, 624, 627, 630, 640, 648, 693, 703, 720
OFFSET
1,2
COMMENTS
Numbers of the form i*(i+j)*(i+2j), where i > 0 and j >= 0.
LINKS
EXAMPLE
1 = 1*1*1, 6 = 1*2*3, 8 = 2*2*2, 15 = 1*3*5, 24 = 2*3*4.
120 = 1*8*15 = 2*6*10 = 4*5*6.
MAPLE
N:= 1000: # for all terms <= N
S:= {}:
for i from 1 to floor(N^(1/3)) do
S:= S union {seq(i*(i+j)*(i+2*j), j=0..floor((sqrt(i^4 + 8*i*N)-3*i^2)/(4*i)))}
od:
A:= sort(convert(S, list)); # Robert Israel, Feb 05 2020
PROG
(PARI) al(n)={local(v, inc, prd);
v=vector(n); inc=[0]; prd=[1];
for(k=1, n,
v[k]=vecmin(prd);
if(v[k]==prd[ #prd], inc=concat(inc, [0]); prd=concat(prd, [(#inc)^3]));
for(j=1, #prd, if(prd[j]==v[k], inc[j]++; prd[j]=j*(j+inc[j])*(j+2*inc[j]))));
v}
(Python)
from itertools import count, islice
from sympy import divisors
from sympy.ntheory.primetest import is_square
def A162651_gen(startvalue=1): # generator of terms >= startvalue
for m in count(max(startvalue, 1)):
for r in divisors(m, generator=True):
if is_square(r**2-m//r):
yield m
break
A162651_list = list(islice(A162651_gen(), 20)) # Chai Wah Wu, Jul 03 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved