login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063534
Numbers k such that C(k) = H(k) + d(k), where C(k) is Chowla's function A048050, H(k) is the half-totient function A023022 and d(k) is the number of divisors function A000005.
2
6, 8, 15, 21, 33, 39, 51, 57, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 699, 717, 723, 753
OFFSET
1,1
LINKS
FORMULA
Conjecture: a(n) = A001748(n), n <> 2. - R. J. Mathar, Dec 15 2008
The conjecture is false. The least counterexample is a(11546) = 368335 = 5 * 11 * 37 * 181. The next counterexample is 4922335, and there are no more below 10^10. - Amiram Eldar, Apr 15 2024
MATHEMATICA
Select[Range[1000], DivisorSigma[1, #] - 1 - # == EulerPhi[#]/2 + DivisorSigma[0, #] &] (* Paolo Xausa, Apr 17 2024 *)
PROG
(PARI) C(n)=sigma(n)-n-1;
H(n)=eulerphi(n)/2;
j=[]; for(n=1, 1200, if(C(n)==H(n)+numdiv(n), j=concat(j, n))); j
(PARI) { n=0; for (m=1, 10^9, if (sigma(m) - m - 1 == eulerphi(m)/2 + numdiv(m), write("b063534.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 25 2009
(PARI) is(n) = {my(f = factor(n)); sigma(f) - n - 1 == eulerphi(f) / 2 + numdiv(f); } \\ Amiram Eldar, Apr 15 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Aug 02 2001
STATUS
approved