|
|
A022320
|
|
a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 6.
|
|
1
|
|
|
1, 6, 8, 15, 24, 40, 65, 106, 172, 279, 452, 732, 1185, 1918, 3104, 5023, 8128, 13152, 21281, 34434, 55716, 90151, 145868, 236020, 381889, 617910, 999800, 1617711, 2617512, 4235224, 6852737, 11087962
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
|
|
FORMULA
|
From R. J. Mathar, Apr 07 2011: (Start)
G.f.: (1 +4*x -4*x^2)/( (1-x)*(1-x-x^2) ).
a(n) = A022113(n) - 1. (End)
a(n) = 2*F(n+2) + 3*F(n) - 1, where F = A000045. - G. C. Greubel, Aug 25 2017
|
|
MATHEMATICA
|
LinearRecurrence[{2, 0, -1}, {1, 6, 8}, 50] (* G. C. Greubel, Aug 25 2017 *)
|
|
PROG
|
(PARI) x='x+O('x^50); Vec((1 +4*x -4*x^2)/((1-x)*(1-x-x^2))) \\ G. C. Greubel, Aug 25 2017
|
|
CROSSREFS
|
Sequence in context: A063534 A162651 A275321 * A318387 A349908 A100646
Adjacent sequences: A022317 A022318 A022319 * A022321 A022322 A022323
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|