Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jul 03 2023 14:31:10
%S 1,6,8,15,24,27,28,45,48,60,64,66,80,91,105,120,125,153,162,168,190,
%T 192,210,216,224,231,276,280,288,312,315,325,336,343,360,378,384,405,
%U 435,440,480,496,504,510,512,528,561,585,624,627,630,640,648,693,703,720
%N Numbers which can be expressed as the product of 3 positive integers in arithmetic progression.
%C Numbers of the form i*(i+j)*(i+2j), where i > 0 and j >= 0.
%H Robert Israel, <a href="/A162651/b162651.txt">Table of n, a(n) for n = 1..10000</a>
%e 1 = 1*1*1, 6 = 1*2*3, 8 = 2*2*2, 15 = 1*3*5, 24 = 2*3*4.
%e 120 = 1*8*15 = 2*6*10 = 4*5*6.
%p N:= 1000: # for all terms <= N
%p S:= {}:
%p for i from 1 to floor(N^(1/3)) do
%p S:= S union {seq(i*(i+j)*(i+2*j),j=0..floor((sqrt(i^4 + 8*i*N)-3*i^2)/(4*i)))}
%p od:
%p A:= sort(convert(S,list)); # _Robert Israel_, Feb 05 2020
%o (PARI) al(n)={local(v,inc,prd);
%o v=vector(n);inc=[0];prd=[1];
%o for(k=1,n,
%o v[k]=vecmin(prd);
%o if(v[k]==prd[ #prd],inc=concat(inc,[0]);prd=concat(prd,[(#inc)^3]));
%o for(j=1,#prd,if(prd[j]==v[k],inc[j]++;prd[j]=j*(j+inc[j])*(j+2*inc[j]))));
%o v}
%o (Python)
%o from itertools import count, islice
%o from sympy import divisors
%o from sympy.ntheory.primetest import is_square
%o def A162651_gen(startvalue=1): # generator of terms >= startvalue
%o for m in count(max(startvalue,1)):
%o for r in divisors(m,generator=True):
%o if is_square(r**2-m//r):
%o yield m
%o break
%o A162651_list = list(islice(A162651_gen(),20)) # _Chai Wah Wu_, Jul 03 2023
%Y Cf. A000578, A007531, A000384, A033996, A011199.
%K nonn
%O 1,2
%A _Franklin T. Adams-Watters_, Jul 08 2009