login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162649
E.g.f. satisfies: A(x) = exp( x*cosh(x*A(x)) ).
2
1, 1, 1, 4, 37, 276, 2221, 26888, 397097, 6055696, 103023481, 2047621632, 44856857101, 1051415079872, 26792169643877, 743266588537216, 22085066412427729, 698048232173484288, 23495515539312273265
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(n,k)*(n-k+1)^(k-1)*Sum_{j=0..k} C(k,j)*(2j-k)^(n-k)/2^k.
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n,m) = Sum_{k=0..n} C(n,k)*m*(n-k+m)^(k-1)*Sum_{j=0..k} C(k,j)*(2j-k)^(n-k)/2^k.
a(n) ~ sqrt((s*(r*s+sqrt(1+r^4*s^2))) / (r*(1+r*s*sqrt(1+r^4*s^2)))) * n^(n-1) / (exp(n)*r^n), where r = 0.49285491893166753586122556276745..., s = 2.549795671338977846249694869195317... are roots of the system of equations r*cosh(r*s) = log(s), r^2*sinh(r*s) = 1/s. - Vaclav Kotesovec, Jul 14 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 37*x^4/4! + 276*x^5/5! +...
log(A(x)) = x*cosh(A(x)) where
cosh(A(x)) = 1 + x^2/2! + 6*x^3/3! + 25*x^4/4! + 160*x^5/5! + 1921*x^6/6! +...
PROG
(PARI) {a(n, m=1)=sum(k=0, n, binomial(n, k)*m*(n-k+m)^(k-1)*sum(j=0, k, binomial(k, j)*(2*j-k)^(n-k)/2^k))}
CROSSREFS
Sequence in context: A335773 A201865 A025542 * A221059 A356284 A197966
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 08 2009
STATUS
approved