login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154825
Reversion of x*(1-2*x)/(1-3*x).
6
1, -1, -1, 1, 5, 3, -21, -51, 41, 391, 407, -1927, -6227, 2507, 49347, 71109, -236079, -966129, 9519, 7408497, 13685205, -32079981, -167077221, -60639939, 1209248505, 2761755543, -4457338681, -30629783831, -22124857219, 206064020315, 572040039283, -590258340811
OFFSET
0,5
LINKS
FORMULA
G.f.: (1+3*x-sqrt(1-2*x+9*x^2))/(4*x). - corrected by Vaclav Kotesovec, Feb 08 2014
G.f.: 1/(1+x/(1-2x/(1+x/(1-2x/(1+x/(1-2x/(1+.... (continued fraction).
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*A000108(k)*2^k*(-3)^(n-k).
From Philippe Deléham, Jan 17 2009: (Start)
a(n) = Sum_{k=0..n} A131198(n,k)*(-1)^(n-k)*2^k.
a(n) = Sum_{k=0..n} A090181(n,k)*(-1)^k*2^(n-k).
a(n) = Sum_{k=0..n} A060693(n,k)*2^(n-k)*(-3)^k.
a(n) = Sum_{k=0..n} A088617(n,k)*2^k*(-3)^(n-k).
a(n) = Sum_{k=0..n} A086810(n,k)*(-1)^k*3^(n-k).
a(n) = Sum_{k=0..n} A133336(n,k)*3^k*(-1)^(n-k). (End)
D-finite with recurrence (n+1)*a(n) = (2*n-1)*a(n-1) - 9*(n-2)*a(n-2). - R. J. Mathar, Nov 15 2012
a(n) = (-3)^n*Hypergeometric2F1([-n, n+1], [2]; 2/3). - G. C. Greubel, May 24 2022
MAPLE
A154825_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := -a[w-1]+2*add(a[j]*a[w-j-1], j=1..w-1)od;
convert(a, list) end: A154825_list(28); # Peter Luschny, May 19 2011
MATHEMATICA
CoefficientList[Series[(1+3*x-Sqrt[1-2*x+9*x^2])/(4*x), {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1+3*x-Sqrt(1-2*x+9*x^2))/(4*x) )); // G. C. Greubel, May 24 2022
(SageMath) [sum(binomial(n+k, n-k)*catalan_number(k)*2^k*(-3)^(n-k) for k in (0..n)) for n in (0..40)] # G. C. Greubel, May 24 2022
KEYWORD
sign,easy
AUTHOR
Paul Barry, Jan 15 2009
STATUS
approved