login
A154822
Primes p of the form : p+p^2+p^3-+4=prime.
3
2161, 4951, 6421, 8761, 12241, 13411, 19891, 20731, 24631, 27271, 28411, 30091, 34981, 40471, 42331, 42901, 52021, 53731, 58111, 60631, 63361, 65701, 74611, 83641, 90841, 95101, 98251, 103171, 104851, 119671, 120871, 131731, 132661
OFFSET
1,1
LINKS
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[p+p^2+p^3-4]&&PrimeQ[p+p^2+p^3+4], AppendTo[lst, p]], {n, 2*8!}]; lst
Select[Prime[Range[15000]], AllTrue[#+#^2+#^3+{4, -4}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 16 2015 *)
CROSSREFS
Sequence in context: A299796 A253715 A205331 * A061335 A159238 A289725
KEYWORD
nonn
AUTHOR
STATUS
approved