login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154822
Primes p of the form : p+p^2+p^3-+4=prime.
3
2161, 4951, 6421, 8761, 12241, 13411, 19891, 20731, 24631, 27271, 28411, 30091, 34981, 40471, 42331, 42901, 52021, 53731, 58111, 60631, 63361, 65701, 74611, 83641, 90841, 95101, 98251, 103171, 104851, 119671, 120871, 131731, 132661
OFFSET
1,1
LINKS
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[p+p^2+p^3-4]&&PrimeQ[p+p^2+p^3+4], AppendTo[lst, p]], {n, 2*8!}]; lst
Select[Prime[Range[15000]], AllTrue[#+#^2+#^3+{4, -4}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 16 2015 *)
CROSSREFS
Sequence in context: A299796 A253715 A205331 * A061335 A159238 A289725
KEYWORD
nonn
AUTHOR
STATUS
approved