login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091593
Reversion of Jacobsthal numbers A001045.
7
1, -1, -1, 5, -3, -21, 51, 41, -391, 407, 1927, -6227, -2507, 49347, -71109, -236079, 966129, 9519, -7408497, 13685205, 32079981, -167077221, 60639939, 1209248505, -2761755543, -4457338681, 30629783831, -22124857219, -206064020315, 572040039283, 590258340811
OFFSET
0,4
COMMENTS
Hankel transform is (-2)^C(n+1,2). - Paul Barry, Apr 28 2009
FORMULA
G.f.: (-(1+x)+sqrt(1+2*x+9*x^2))/(4*x^2). - Corrected by Seiichi Manyama, May 12 2019
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*C(k)*(-1)^(n-k)*2^k, where C(n) is A000108(n). - Paul Barry, May 16 2005
G.f.: 1/(1+x+2x^2/(1+x+2x^2/(1+x+2x^2/(1+x+2x^2/(1+ ... (continued fraction). - Paul Barry, Apr 28 2009
a(n) = Sum_{i=0..n} (2^(i)*(-1)^(n-i)*binomial(n+1,i)^2*(n-i+1)/(i+1))/(n+1). - Vladimir Kruchinin, Oct 12 2011
Conjecture: (n+2)*a(n) +(2*n+1)*a(n-1) +9*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
a(n) = (-1)^n*hypergeom([-n/2, (1-n)/2], [2], -8). - Peter Luschny, May 28 2014
R. J. Mathar's conjecture confirmed by Maple using this hypergeom form. - Robert Israel, Sep 22 2014
a(n) = Sum_{k = 0..n} (-2)^k * (1/(n+1))*binomial(n+1, k)*binomial(n+1, k+1) = Sum_{k = 0..n} (-2)^k * N(n+1,k+1), where N(n,k) = A001263(n,k) are the Narayana numbers. - Peter Bala, Sep 01 2023
MAPLE
a := n -> hypergeom([-n, -n-1], [2], -2);
seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 22 2014
# Using function CompInv from A357588.
CompInv(25, n -> (2^n - (-1)^n)/3 ); # Peter Luschny, Oct 07 2022
MATHEMATICA
a[n_] := Hypergeometric2F1[-n - 1, -n - 1, 2, -2] + (n + 1)*Hypergeometric2F1[-n, -n, 3, -2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 03 2016, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=sum(2^(i)*(-1)^(n-i)*binomial(n+1, i)^2*(n-i+1)/(i+1), i, 0, n)/(n+1); (* Vladimir Kruchinin, Oct 12 2011 *)
(Sage) # Algorithm of L. Seidel (1877)
def A091593_list(n) :
D = [0]*(n+2); D[1] = 1
R = []; b = false; h = 1
for i in range(2*n) :
if b :
for k in range(1, h, 1) : D[k] += -2*D[k+1]
R.append(D[1])
else :
for k in range(h, 0, -1) : D[k] += D[k-1]
h += 1
b = not b
return R
A091593_list(30) # Peter Luschny, Oct 19 2012
CROSSREFS
Sequence in context: A221473 A199638 A296356 * A154825 A139699 A303634
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jan 23 2004
STATUS
approved