Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Oct 05 2024 14:34:54
%S 1,-1,-1,1,5,3,-21,-51,41,391,407,-1927,-6227,2507,49347,71109,
%T -236079,-966129,9519,7408497,13685205,-32079981,-167077221,-60639939,
%U 1209248505,2761755543,-4457338681,-30629783831,-22124857219,206064020315,572040039283,-590258340811
%N Reversion of x*(1-2*x)/(1-3*x).
%H Vincenzo Librandi, <a href="/A154825/b154825.txt">Table of n, a(n) for n = 0..200</a>
%F G.f.: (1+3*x-sqrt(1-2*x+9*x^2))/(4*x). - corrected by _Vaclav Kotesovec_, Feb 08 2014
%F G.f.: 1/(1+x/(1-2x/(1+x/(1-2x/(1+x/(1-2x/(1+.... (continued fraction).
%F a(n) = Sum_{k=0..n} binomial(n+k, 2k)*A000108(k)*2^k*(-3)^(n-k).
%F From _Philippe Deléham_, Jan 17 2009: (Start)
%F a(n) = Sum_{k=0..n} A131198(n,k)*(-1)^(n-k)*2^k.
%F a(n) = Sum_{k=0..n} A090181(n,k)*(-1)^k*2^(n-k).
%F a(n) = Sum_{k=0..n} A060693(n,k)*2^(n-k)*(-3)^k.
%F a(n) = Sum_{k=0..n} A088617(n,k)*2^k*(-3)^(n-k).
%F a(n) = Sum_{k=0..n} A086810(n,k)*(-1)^k*3^(n-k).
%F a(n) = Sum_{k=0..n} A133336(n,k)*3^k*(-1)^(n-k). (End)
%F D-finite with recurrence (n+1)*a(n) = (2*n-1)*a(n-1) - 9*(n-2)*a(n-2). - _R. J. Mathar_, Nov 15 2012
%F a(n) = (-3)^n*Hypergeometric2F1([-n, n+1], [2]; 2/3). - _G. C. Greubel_, May 24 2022
%p A154825_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
%p for w from 1 to n do a[w] := -a[w-1]+2*add(a[j]*a[w-j-1],j=1..w-1)od;
%p convert(a, list) end: A154825_list(28); # _Peter Luschny_, May 19 2011
%t CoefficientList[Series[(1+3*x-Sqrt[1-2*x+9*x^2])/(4*x), {x, 0, 40}], x] (* _Vaclav Kotesovec_, Feb 08 2014 *)
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1+3*x-Sqrt(1-2*x+9*x^2))/(4*x) )); // _G. C. Greubel_, May 24 2022
%o (SageMath) [sum(binomial(n+k,n-k)*catalan_number(k)*2^k*(-3)^(n-k) for k in (0..n)) for n in (0..40)] # _G. C. Greubel_, May 24 2022
%Y Cf. A000108, A060693, A086810, A088617, A090181, A091593, A131198, A133336.
%K sign,easy
%O 0,5
%A _Paul Barry_, Jan 15 2009