

A132270


a(n) = floor((n^71)/(7*n^6)), which is the same as integers repeated 7 times.


12



0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,15


LINKS

Table of n, a(n) for n=1..76.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,1).


FORMULA

Also, floor[(n^7n^6)/(7n^66n^5)] will produce this sequence as well.  Mohammad K. Azarian, Nov 08 2007
a(n) = 1 + Sum_{k=0..n}{1(k^6 mod 7)]}, with n>=0  Paolo P. Lava, Nov 27 2007
G.f.: x^8/(1xx^7+x^8).  Robert Israel, Feb 02 2015


MAPLE

A132270:=n>floor((n1)/7); seq(A132270(n), n=1..100); # Wesley Ivan Hurt, Dec 10 2013


MATHEMATICA

Table[Floor[(n  1)/7], {n, 100}] (* Wesley Ivan Hurt, Dec 10 2013 *)
Table[PadRight[{}, 7, n], {n, 0, 10}]//Flatten (* or *) LinearRecurrence[ {1, 0, 0, 0, 0, 0, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 1}, 100] (* Harvey P. Dale, Jun 08 2017 *)


PROG

(PARI) a(n)=(n1)\7 \\ Charles R Greathouse IV, Dec 10 2013


CROSSREFS

Cf. A004526, A002264, A002265, A002266, A054895.
Sequence in context: A115338 A226046 A133877 * A195174 A187185 A054896
Adjacent sequences: A132267 A132268 A132269 * A132271 A132272 A132273


KEYWORD

nonn,easy


AUTHOR

Mohammad K. Azarian, Nov 06 2007


EXTENSIONS

Offset corrected by Mohammad K. Azarian, Nov 19 2008


STATUS

approved



