login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132270 Floor((n^7-1)/(7*n^6)), which is the same as integers repeated 7 times. 12
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,15

LINKS

Table of n, a(n) for n=1..76.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).

FORMULA

Also, floor[(n^7-n^6)/(7n^6-6n^5)] will produce this sequence as well. - Mohammad K. Azarian, Nov 08 2007

a(n) = -1 + Sum_{k=0..n}{1-(k^6 mod 7)]}, with n>=0 - Paolo P. Lava, Nov 27 2007

G.f.: x^8/(1-x-x^7+x^8). - Robert Israel, Feb 02 2015

MAPLE

A132270:=n->floor((n-1)/7); seq(A132270(n), n=1..100); # Wesley Ivan Hurt, Dec 10 2013

MATHEMATICA

Table[Floor[(n - 1)/7], {n, 100}] (* Wesley Ivan Hurt, Dec 10 2013 *)

Table[PadRight[{}, 7, n], {n, 0, 10}]//Flatten (* or *) LinearRecurrence[ {1, 0, 0, 0, 0, 0, 1, -1}, {0, 0, 0, 0, 0, 0, 0, 1}, 100] (* Harvey P. Dale, Jun 08 2017 *)

PROG

(PARI) a(n)=(n-1)\7 \\ Charles R Greathouse IV, Dec 10 2013

CROSSREFS

Cf. A004526, A002264, A002265, A002266, A054895.

Sequence in context: A115338 A226046 A133877 * A195174 A187185 A054896

Adjacent sequences:  A132267 A132268 A132269 * A132271 A132272 A132273

KEYWORD

nonn,easy

AUTHOR

Mohammad K. Azarian, Nov 06 2007

EXTENSIONS

Offset corrected by Mohammad K. Azarian, Nov 19 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 11:56 EDT 2018. Contains 316321 sequences. (Running on oeis4.)