login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132292 Integers repeated 8 times: a(n) = floor((n-1)/8). 5
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,17

COMMENTS

Also floor((n^8-1)/(8*n^7)).

LINKS

Table of n, a(n) for n=1..88.

FORMULA

Also, a(n) = floor((n^8-n^7)/(8n^7-7n^6)). - Mohammad K. Azarian, Nov 18 2007

a(n) = -1 + Sum_{k=0..n} ((1/224)*(-27*(k mod 8) + ((k+1) mod 8) + ((k+2) mod 8) + ((k+3) mod 8)  +((k+4) mod 8) + ((k+5) mod 8) + ((k+6) mod 8) + 29*((k+7) mod 8))). - Paolo P. Lava, Nov 27 2007

a(n) = A180969(3,n).

a(n) = (r - 8 + 4*sin(r*Pi/8))/16 where r = 2*n - 1 - 2*cos(n*Pi/2) - cos(n*Pi) + 2*sin(n*Pi/2). - Wesley Ivan Hurt, Oct 04 2018

MAPLE

A132292:=n->floor((n-1)/8); seq(A132292(n), n=1..100); # Wesley Ivan Hurt, Feb 27 2014

MATHEMATICA

Table[Floor[(n-1)/8], {n, 100}] (* Wesley Ivan Hurt, Feb 27 2014 *)

PROG

(PARI) a(n)=(n-1)\8 \\ Charles R Greathouse IV, Jun 18 2013

(MAGMA) [(n - 1) div 8 : n in [1..90]]; // Vincenzo Librandi, Oct 05 2018

CROSSREFS

Cf. A004526, A002264, A002265, A002266, A054895.

Sequence in context: A261585 A058318 A133878 * A110656 A104407 A054897

Adjacent sequences:  A132289 A132290 A132291 * A132293 A132294 A132295

KEYWORD

nonn,easy,changed

AUTHOR

Mohammad K. Azarian, Nov 06 2007

EXTENSIONS

Offset corrected by Mohammad K. Azarian, Nov 20 2008

New name from Wesley Ivan Hurt, Jun 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 01:37 EDT 2018. Contains 316275 sequences. (Running on oeis4.)