The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132292 Integers repeated 8 times: a(n) = floor((n-1)/8). 8
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,17
COMMENTS
Also floor((n^8-1)/(8*n^7)).
LINKS
FORMULA
Also, a(n) = floor((n^8-n^7)/(8n^7-7n^6)). - Mohammad K. Azarian, Nov 18 2007
a(n) = A180969(3,n).
a(n) = (r - 8 + 4*sin(r*Pi/8))/16 where r = 2*n - 1 - 2*cos(n*Pi/2) - cos(n*Pi) + 2*sin(n*Pi/2). - Wesley Ivan Hurt, Oct 04 2018
MAPLE
A132292:=n->floor((n-1)/8); seq(A132292(n), n=1..100); # Wesley Ivan Hurt, Feb 27 2014
MATHEMATICA
Table[Floor[(n-1)/8], {n, 100}] (* Wesley Ivan Hurt, Feb 27 2014 *)
Table[PadRight[{}, 8, n], {n, 0, 10}]//Flatten (* Harvey P. Dale, Apr 13 2020 *)
PROG
(PARI) a(n)=(n-1)\8 \\ Charles R Greathouse IV, Jun 18 2013
(Magma) [(n - 1) div 8 : n in [1..90]]; // Vincenzo Librandi, Oct 05 2018
(Python)
def A132292(n): return n-1>>3 # Chai Wah Wu, Jul 27 2022
CROSSREFS
Sequence in context: A261585 A058318 A133878 * A110656 A104407 A054897
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Nov 06 2007
EXTENSIONS
Offset corrected by Mohammad K. Azarian, Nov 20 2008
New name from Wesley Ivan Hurt, Jun 17 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 11:21 EDT 2024. Contains 372824 sequences. (Running on oeis4.)