OFFSET
0,17
COMMENTS
Different from the highest power of 8 dividing n!, A090617.
LINKS
Hieronymus Fischer, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = floor(n/8) + floor(n/64) + floor(n/512) + floor(n/4096) + ....
a(n) = (n - A053829(n))/7.
From Hieronymus Fischer, Aug 14 2007: (Start)
Recurrence:
a(n) = floor(n/8) + a(floor(n/8));
a(8*n) = n + a(n);
a(n*8^m) = n*(8^m-1)/7 + a(n).
a(k*8^m) = k*(8^m-1)/7, for 0 <= k < 8, m >= 0.
Asymptotic behavior:
a(n) = n/7 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/7; equality holds for powers of 8.
a(n) >= (n-7)/7 - floor(log_8(n)); equality holds for n=8^m-1, m>0.
lim inf (n/7 - a(n)) = 1/7, for n -> oo.
lim sup (n/7 - log_8(n) - a(n)) = 0, for n -> oo.
lim sup (a(n+1) - a(n) - log_8(n)) = 0, for n -> oo.
G.f.: g(x) = ( Sum_{k>0} x^(8^k)/(1-x^(8^k)) )/(1-x). (End)
Partial sums of A244413. - R. J. Mathar, Jul 08 2021
EXAMPLE
a(100) = 13.
a(10^3) = 141.
a(10^4) = 1427.
a(10^5) = 14284.
a(10^6) = 142855.
a(10^7) = 1428569.
a(10^8) = 14285710.
a(10^9) = 142857138.
MATHEMATICA
Table[t=0; p=8; While[s=Floor[n/p]; t=t+s; s>0, p *= 8]; t, {n, 0, 100}]
PROG
(Python)
def A054897(n): return (n-sum(int(d) for d in oct(n)[2:]))//7 # Chai Wah Wu, Jul 09 2022
(Magma)
m:=8;
function a(n) // a = A054897
if n eq 0 then return n;
else return a(Floor(n/m)) + Floor(n/m);
end if;
end function;
[a(n): n in [0..103]]; // G. C. Greubel, Apr 28 2023
(SageMath)
m=8 # a = A054897
def a(n): return 0 if (n==0) else a(n//m) + (n//m)
[a(n) for n in range(104)] # G. C. Greubel, Apr 28 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, May 23 2000
EXTENSIONS
Examples added by Hieronymus Fischer, Jun 06 2012
STATUS
approved