login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054898 a(n) = Sum_{k>0} floor(n/9^k). 4
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,19

COMMENTS

Different from the highest power of 9 dividing n!.

LINKS

Hieronymus Fischer, Table of n, a(n) for n = 0..10000

FORMULA

floor[n/9] + floor[n/81] + floor[n/729] + floor[n/6561] + ....

a(n) = (n-A053830(n))/8.

From Hieronymus Fischer, Aug 14 2007 (Start):

Recurrence:

a(n) = floor(n/9) + a(floor(n/9));

a(9*n) = n + a(n);

a(n*9^m) = n*(9^m-1)/8 + a(n).

a(k*9^m) = k*(9^m-1)/8, for 0<=k<9, m>=0.

Asymptotic behavior:

a(n) = n/8 + O(log(n)),

a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.

a(n) <= (n-1)/8; equality holds for powers of 9.

a(n) >= (n-8)/8 - floor(log_9(n)); equality holds for n=9^m-1, m>0.

lim inf (n/8 - a(n)) =1/8, for n-->oo.

lim sup (n/8 - log_9(n) - a(n)) = 0, for n-->oo.

lim sup (a(n+1) - a(n) - log_9(n)) = 0, for n-->oo.

G.f.: g(x) = sum{k>0, x^(9^k)/(1-x^(9^k))}/(1-x). (End)

EXAMPLE

a(100)=12.

a(10^3)=124.

a(10^4)=1248.

a(10^5)=12498.

a(10^6)=124996.

a(10^7)=1249997.

a(10^8)=12499996.

a(10^9)=124999997.

MATHEMATICA

Table[t = 0; p = 9; While[s = Floor[n/p]; t = t + s; s > 0, p *= 9]; t, {n, 0, 100} ]

CROSSREFS

Cf. A011371 and A054861 for analogs involving powers of 2 and 3.

Cf. A054899, A067080, A098844, A132033.

Sequence in context: A111856 A111857 A133879 * A279951 A279224 A167383

Adjacent sequences:  A054895 A054896 A054897 * A054899 A054900 A054901

KEYWORD

nonn

AUTHOR

Henry Bottomley, May 23 2000

EXTENSIONS

Examples added by Hieronymus Fischer, Jun 06 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 18:47 EDT 2019. Contains 327083 sequences. (Running on oeis4.)