This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054898 a(n) = Sum_{k>0} floor(n/9^k). 4
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,19 COMMENTS Different from the highest power of 9 dividing n!. LINKS Hieronymus Fischer, Table of n, a(n) for n = 0..10000 FORMULA floor[n/9] + floor[n/81] + floor[n/729] + floor[n/6561] + .... a(n) = (n-A053830(n))/8. From Hieronymus Fischer, Aug 14 2007 (Start): Recurrence: a(n) = floor(n/9) + a(floor(n/9)); a(9*n) = n + a(n); a(n*9^m) = n*(9^m-1)/8 + a(n). a(k*9^m) = k*(9^m-1)/8, for 0<=k<9, m>=0. Asymptotic behavior: a(n) = n/8 + O(log(n)), a(n+1) - a(n) = O(log(n)); this follows from the inequalities below. a(n) <= (n-1)/8; equality holds for powers of 9. a(n) >= (n-8)/8 - floor(log_9(n)); equality holds for n=9^m-1, m>0. lim inf (n/8 - a(n)) =1/8, for n-->oo. lim sup (n/8 - log_9(n) - a(n)) = 0, for n-->oo. lim sup (a(n+1) - a(n) - log_9(n)) = 0, for n-->oo. G.f.: g(x) = sum{k>0, x^(9^k)/(1-x^(9^k))}/(1-x). (End) EXAMPLE a(100)=12. a(10^3)=124. a(10^4)=1248. a(10^5)=12498. a(10^6)=124996. a(10^7)=1249997. a(10^8)=12499996. a(10^9)=124999997. MATHEMATICA Table[t = 0; p = 9; While[s = Floor[n/p]; t = t + s; s > 0, p *= 9]; t, {n, 0, 100} ] CROSSREFS Cf. A011371 and A054861 for analogs involving powers of 2 and 3. Cf. A054899, A067080, A098844, A132033. Sequence in context: A111856 A111857 A133879 * A279951 A279224 A167383 Adjacent sequences:  A054895 A054896 A054897 * A054899 A054900 A054901 KEYWORD nonn AUTHOR Henry Bottomley, May 23 2000 EXTENSIONS Examples added by Hieronymus Fischer, Jun 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 18:47 EDT 2019. Contains 327083 sequences. (Running on oeis4.)