login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k>0} floor(n/9^k).
4

%I #21 Jul 10 2024 12:49:00

%S 0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,

%T 3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,

%U 7,7,7,7,8,8,8,8,8,8,8,8,8,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11

%N a(n) = Sum_{k>0} floor(n/9^k).

%C Different from the highest power of 9 dividing n!, A090618.

%H Hieronymus Fischer, <a href="/A054898/b054898.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = floor(n/9) + floor(n/81) + floor(n/729) + floor(n/6561) + ....

%F a(n) = (n-A053830(n))/8.

%F From _Hieronymus Fischer_, Aug 14 2007: (Start)

%F Recurrence:

%F a(n) = floor(n/9) + a(floor(n/9));

%F a(9*n) = n + a(n);

%F a(n*9^m) = n*(9^m-1)/8 + a(n).

%F a(k*9^m) = k*(9^m-1)/8, for 0<=k<9, m>=0.

%F Asymptotic behavior:

%F a(n) = n/8 + O(log(n)),

%F a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.

%F a(n) <= (n-1)/8; equality holds for powers of 9.

%F a(n) >= (n-8)/8 - floor(log_9(n)); equality holds for n=9^m-1, m>0.

%F lim inf (n/8 - a(n)) =1/8, for n-->oo.

%F lim sup (n/8 - log_9(n) - a(n)) = 0, for n-->oo.

%F lim sup (a(n+1) - a(n) - log_9(n)) = 0, for n-->oo.

%F G.f.: g(x) = sum{k>0, x^(9^k)/(1-x^(9^k))}/(1-x). (End)

%e a(100)=12.

%e a(10^3)=124.

%e a(10^4)=1248.

%e a(10^5)=12498.

%e a(10^6)=124996.

%e a(10^7)=1249997.

%e a(10^8)=12499996.

%e a(10^9)=124999997.

%t Table[t = 0; p = 9; While[s = Floor[n/p]; t = t + s; s > 0, p *= 9]; t, {n, 0, 100} ]

%t Table[Sum[Floor[n/9^k],{k,n}],{n,0,100}] (* _Harvey P. Dale_, Jul 10 2024 *)

%Y Cf. A011371 and A054861 for analogs involving powers of 2 and 3.

%Y Cf. A054899, A067080, A098844, A132033.

%K nonn

%O 0,19

%A _Henry Bottomley_, May 23 2000

%E Examples added by _Hieronymus Fischer_, Jun 06 2012