The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133878 n modulo 8 repeated 8 times. 2
 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Periodic with length 8^2=64. LINKS Table of n, a(n) for n=0..104. Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1). FORMULA a(n)=(1+floor(n/8)) mod 8. a(n)=1+floor(n/8)-8*floor((n+8)/64). a(n)=(((n+8) mod 64)-(n mod 8))/8. a(n)=((n+8-(n mod 8))/8) mod 8. G.f. g(x)=(1-x^8)(1+2x^8+3x^16+4x^24+5x^32+6x^40+7x^48)/((1-x)(1-x^64)). G.f. g(x)=(1-x^8)*sum{0<=k<7, (k+1)*x^(8*k)}/((1-x)(1-x^64)). G.f. g(x)=(7x^64-8x^56+1)/((1-x)(1-x^8)(1-x^64)). MATHEMATICA Flatten[Join[Table[PadRight[{}, 8, n], {n, 7}], Table[PadRight[{}, 8, n], {n, 0, 7}]]] (* Harvey P. Dale, Nov 06 2011 *) CROSSREFS Cf. A000040, A133620-A133625, A133630, A038509, A133634-A133636. Cf. A133888, A133880, A133890, A133900, A133910. Sequence in context: A135664 A261585 A058318 * A132292 A110656 A104407 Adjacent sequences: A133875 A133876 A133877 * A133879 A133880 A133881 KEYWORD nonn AUTHOR Hieronymus Fischer, Oct 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 06:13 EDT 2024. Contains 371623 sequences. (Running on oeis4.)