login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133875
n modulo 5 repeated 5 times.
10
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1
OFFSET
0,6
COMMENTS
Periodic with length 5^2 = 25.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1).
FORMULA
a(n) = (1 + floor(n/5)) mod 5.
a(n) = A010874(A002266(n+5)).
a(n) = 1 + floor(n/5) - 5*floor((n+5)/25).
a(n) = (((n+5) mod 25) - (n mod 5)) / 5.
a(n) = ((n + 5 - (n mod 5)) / 5) mod 5.
a(n) = A010874((n + 5 - A010874(n))/5).
a(n) = binomial(n+5, n) mod 5 = binomial(n+5, 5) mod 5.
a(n) = +a(n-1) -a(n-5) +a(n-6) -a(n-10) +a(n-11) -a(n-15) +a(n-16) -a(n-20) +a(n-21). - R. J. Mathar, Sep 03 2011
G.f.: ( 1+2*x^5+3*x^10+4*x^15 ) / ( (1-x)*(x^20+x^15+x^10+x^5+1) ). - R. J. Mathar, Sep 03 2011
MAPLE
A133875:=n->((1+floor(n/5)) mod 5); seq(A133875(n), n=0..100); # Wesley Ivan Hurt, Jun 06 2014
MATHEMATICA
Table[Mod[1 + Floor[n/5], 5], {n, 0, 100}] (* Wesley Ivan Hurt, Jun 06 2014 *)
LinearRecurrence[{1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1}, {1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0}, 120] (* Harvey P. Dale, Dec 14 2017 *)
PROG
(Magma) [(1 + Floor(n/5)) mod 5 : n in [0..50]]; // Wesley Ivan Hurt, Jun 06 2014
KEYWORD
nonn,easy,less
AUTHOR
Hieronymus Fischer, Oct 10 2007
STATUS
approved