OFFSET
0,6
COMMENTS
Periodic with length 5^2 = 25.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1).
FORMULA
a(n) = (1 + floor(n/5)) mod 5.
a(n) = 1 + floor(n/5) - 5*floor((n+5)/25).
a(n) = (((n+5) mod 25) - (n mod 5)) / 5.
a(n) = ((n + 5 - (n mod 5)) / 5) mod 5.
a(n) = binomial(n+5, n) mod 5 = binomial(n+5, 5) mod 5.
a(n) = +a(n-1) -a(n-5) +a(n-6) -a(n-10) +a(n-11) -a(n-15) +a(n-16) -a(n-20) +a(n-21). - R. J. Mathar, Sep 03 2011
G.f.: ( 1+2*x^5+3*x^10+4*x^15 ) / ( (1-x)*(x^20+x^15+x^10+x^5+1) ). - R. J. Mathar, Sep 03 2011
MAPLE
MATHEMATICA
Table[Mod[1 + Floor[n/5], 5], {n, 0, 100}] (* Wesley Ivan Hurt, Jun 06 2014 *)
LinearRecurrence[{1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1}, {1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0}, 120] (* Harvey P. Dale, Dec 14 2017 *)
PROG
(Magma) [(1 + Floor(n/5)) mod 5 : n in [0..50]]; // Wesley Ivan Hurt, Jun 06 2014
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Hieronymus Fischer, Oct 10 2007
STATUS
approved