OFFSET
2,1
COMMENTS
3 divides A023163(n) for n > 1. A023163(n) are the numbers n such that Fibonacci(n) == -2 (mod n). Almost all terms of {a(n)} are prime that belong to A003631 = {2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97} (primes congruent to {2, 3} mod 5) that are also the primes p that divide Fibonacci(p+1). The first composite term is a(74) = 1853 = 17*109. The second composite term is 9701 = 89*109. The third composite term is 10877 = 73*149 belong to A069107(n) Composite n such that n divides F(n+1) where F(k) are the Fibonacci numbers. Composite terms in {a(n)} are listed in A128289 = {1853, 9701, 10877, 17261, ...}.
FORMULA
a(n) = A023163(n)/3 for n > 1.
EXAMPLE
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Feb 24 2007
STATUS
approved