|
|
A002708
|
|
a(n) = Fibonacci(n) mod n.
|
|
20
|
|
|
0, 1, 2, 3, 0, 2, 6, 5, 7, 5, 1, 0, 12, 13, 10, 11, 16, 10, 1, 5, 5, 1, 22, 0, 0, 25, 20, 11, 1, 20, 1, 5, 13, 33, 30, 0, 36, 1, 37, 35, 1, 34, 42, 25, 20, 45, 46, 0, 36, 25, 32, 23, 52, 8, 5, 21, 40, 1, 1, 0, 1, 1, 43, 59, 60, 52, 66, 65, 44, 15, 1, 0, 72, 73, 50, 3, 2, 44, 1, 5, 7, 1, 82, 24
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
REFERENCES
|
S. Wolfram, A New Kind of Science, Wolfram Media, 2002, p. 891.
|
|
LINKS
|
|
|
MAPLE
|
with(combinat): [ seq( fibonacci(n) mod n, n=1..80) ];
# second Maple program:
a:= proc(n) local r, M, p; r, M, p:=
<<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
do if irem(p, 2, 'p')=1 then r:= r.M mod n fi;
if p=0 then break fi; M:= M.M mod n
od; r[1, 2]
end:
|
|
MATHEMATICA
|
|
|
PROG
|
(Python)
for n in range(1, 10**4+1):
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
John C. Hallyburton, Jr. (hallyb(AT)evms.ENET.dec.com)
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|