OFFSET
1,8
COMMENTS
The length of the n-th row (the length of the period) is A001175(n).
LINKS
Alois P. Heinz, Rows n = 1..200, flattened
J. D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arithm. 16 (1969) 106-110.
Wayne Peng, ABC Implies There are Infinitely Many non-Fibonacci-Wieferich Primes - An Application of ABC Conjecture over Number Fields, arXiv:1511.05645 [math.NT], 2015.
Eric Weisstein's World of Mathematics, Pisano Period.
Wikipedia, Pisano period.
EXAMPLE
F(n) mod 1 {0},
F(n) mod 2 {0,1,1},
F(n) mod 3 {0,1,1,2,0,2,2,1},
F(n) mod 4 {0,1,1,2,3,1},
F(n) mod 5 {0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1},
F(n) mod 6 {0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1},
F(n) mod 7 {0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1},
F(n) mod 8 {0,1,1,2,3,5,0,5,5,2,7,1},
F(n) mod 9 {0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1},
F(n) mod 10 {0,1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8, 1,9,0,9,9,8,7,5,2,7,9,6,5,1,6,7,3,0,3,3,6,9,5,4,9,3,2,5,7,2,9,1}.
MATHEMATICA
per[1] = 1; per[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[Fibonacci[k + 1], n] == 1, Return[k]]];
row[n_] := Table[Mod[Fibonacci[k], n], {k, 0, per[n]-1}];
Array[row, 9] // Flatten (* Jean-François Alcover, Oct 30 2018 *)
PROG
(PARI) row(n)={my(L=List([0]), X=Mod([1, 1; 1, 0], n), I=Mod([1, 0; 0, 1], n), M=X); while(M<>I, M*=X; listput(L, lift(M[2, 2]))); Vec(L)} \\ Andrew Howroyd, Mar 05 2023
CROSSREFS
KEYWORD
AUTHOR
Alexander Adamchuk, Jun 13 2009
EXTENSIONS
Moved into the keyword:tabf category by R. J. Mathar, Oct 04 2009
STATUS
approved