login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340410
Number of sets of nonempty words with a total of n letters over ternary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
2
1, 1, 3, 13, 36, 122, 433, 1356, 4449, 15279, 48567, 158837, 532415, 1704777, 5547148, 18335536, 58815602, 190574866, 623885902, 2000945191, 6459510350, 20998728429, 67275468661, 216477522426, 699952967976, 2239210854373, 7184690267832, 23131348476391
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{j>=1} (1+x^j)^A092255(j).
EXAMPLE
a(3) = 13: {aaa}, {aab}, {aba}, {baa}, {abc}, {acb}, {bac}, {bca}, {cab}, {cba}, {aa,a}, {ab,a}, {ba,a}.
MAPLE
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i)))
end:
a:= n-> h(n$2, min(n, 3)):
seq(a(n), n=0..32);
CROSSREFS
Column k=3 of A292795.
Cf. A092255.
Sequence in context: A146424 A146049 A061483 * A128288 A113115 A107136
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 06 2021
STATUS
approved