login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340409
Number of sets of nonempty words with a total of n letters over binary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
2
1, 1, 3, 7, 18, 42, 110, 250, 627, 1439, 3523, 8063, 19374, 44274, 104816, 238976, 559171, 1271295, 2946901, 6679741, 15363719, 34719631, 79335385, 178749829, 406164359, 912475815, 2063298409, 4622461673, 10407679805, 23254807241, 52160338735, 116252939071
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{j>=1} (1+x^j)^A027306(j).
EXAMPLE
a(3) = 7: {aaa}, {aab}, {aba}, {baa}, {aa,a}, {ab,a}, {ba,a}.
MAPLE
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i)))
end:
a:= n-> h(n$2, min(n, 2)):
seq(a(n), n=0..32);
CROSSREFS
Column k=2 of A292795.
Cf. A027306.
Sequence in context: A319001 A036669 A000633 * A374640 A091621 A129921
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 06 2021
STATUS
approved