login
A107136
Primes of the form 3x^2 + 10y^2.
1
3, 13, 37, 43, 67, 157, 163, 277, 283, 307, 373, 397, 523, 547, 613, 643, 733, 757, 787, 853, 877, 883, 907, 997, 1093, 1117, 1123, 1213, 1237, 1453, 1483, 1597, 1627, 1693, 1723, 1747, 1867, 1933, 1987, 2053, 2083, 2203, 2293, 2347, 2437, 2467
OFFSET
1,1
COMMENTS
Discriminant = -120. See A107132 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {3, 13, 37, 43, 67} (mod 120). - T. D. Noe, May 02 2008
MATHEMATICA
QuadPrimes2[3, 0, 10, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(3000) | p mod 120 in {3, 13, 37, 43, 67} ]; // Vincenzo Librandi, Jul 23 2012
(PARI) list(lim)=my(v=List([3]), s=[13, 37, 43, 67]); forprime(p=13, lim, if(setsearch(s, p%120), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Cf. A139827.
Sequence in context: A340410 A128288 A113115 * A153009 A147168 A147183
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved