%I
%S 3,13,37,43,67,157,163,277,283,307,373,397,523,547,613,643,733,757,
%T 787,853,877,883,907,997,1093,1117,1123,1213,1237,1453,1483,1597,1627,
%U 1693,1723,1747,1867,1933,1987,2053,2083,2203,2293,2347,2437,2467
%N Primes of the form 3x^2 + 10y^2.
%C Discriminant = 120. See A107132 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A107136/b107136.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {3, 13, 37, 43, 67} (mod 120).  _T. D. Noe_, May 02 2008
%t QuadPrimes2[3, 0, 10, 10000] (* see A106856 *)
%o (MAGMA) [ p: p in PrimesUpTo(3000)  p mod 120 in {3, 13, 37, 43, 67} ]; // _Vincenzo Librandi_, Jul 23 2012
%o (PARI) list(lim)=my(v=List([3]), s=[13, 37, 43, 67]); forprime(p=13, lim, if(setsearch(s, p%120), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 09 2017
%Y Cf. A139827.
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 13 2005
