login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069107
Composite numbers k that divide Fibonacci(k+1).
12
323, 377, 2834, 3827, 5777, 6479, 10877, 11663, 18407, 19043, 20999, 23407, 25877, 27323, 34943, 35207, 39203, 44099, 47519, 50183, 51983, 53663, 60377, 65471, 75077, 78089, 79547, 80189, 81719, 82983, 84279, 84419, 86063, 90287, 94667
OFFSET
1,1
COMMENTS
Primes p congruent to +2 or -2 (mod 5) divide Fibonacci(p+1) (cf. A003631 and [Hardy and Wright]).
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth edition), Oxford Univ. Press (Clarendon), 1979, Chap. X, p. 150.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..2000 (n = 1..250 from Reinhard Zumkeller, n = 251..1000 from Giovanni Resta)
FORMULA
Fibonacci(2*a(n)) mod a(n) = a(n) - 1. - Gary Detlefs, May 26 2014
MATHEMATICA
Select[Range[2, 100000], !PrimeQ[#]&&Divisible[Fibonacci[#+1], #]&] (* Harvey P. Dale, Sep 18 2011 *)
PROG
(Haskell)
a069107 n = a069107_list !! (n-1)
a069107_list = h 2 $ drop 3 a000045_list where
h n (fib:fibs) = if fib `mod` n > 0 || a010051 n == 1
then h (n+1) fibs else n : h (n+1) fibs
-- Reinhard Zumkeller, Oct 13 2011
(PARI) is(n)=((Mod([1, 1; 1, 0], n))^(n+1))[1, 2]==0 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Oct 07 2016
CROSSREFS
Cf. A045468, A003631, A064739, A081264 (Fibonacci pseudoprimes).
Sequence in context: A339517 A217120 A081264 * A094412 A182504 A177745
KEYWORD
nice,nonn
AUTHOR
Benoit Cloitre, Apr 06 2002
EXTENSIONS
Corrected by Ralf Stephan, Oct 17 2002
STATUS
approved