login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Composite numbers k that divide Fibonacci(k+1).
12

%I #47 Dec 03 2021 00:53:52

%S 323,377,2834,3827,5777,6479,10877,11663,18407,19043,20999,23407,

%T 25877,27323,34943,35207,39203,44099,47519,50183,51983,53663,60377,

%U 65471,75077,78089,79547,80189,81719,82983,84279,84419,86063,90287,94667

%N Composite numbers k that divide Fibonacci(k+1).

%C Primes p congruent to +2 or -2 (mod 5) divide Fibonacci(p+1) (cf. A003631 and [Hardy and Wright]).

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth edition), Oxford Univ. Press (Clarendon), 1979, Chap. X, p. 150.

%H Chai Wah Wu, <a href="/A069107/b069107.txt">Table of n, a(n) for n = 1..2000</a> (n = 1..250 from Reinhard Zumkeller, n = 251..1000 from Giovanni Resta)

%F Fibonacci(2*a(n)) mod a(n) = a(n) - 1. - _Gary Detlefs_, May 26 2014

%t Select[Range[2,100000],!PrimeQ[#]&&Divisible[Fibonacci[#+1],#]&] (* _Harvey P. Dale_, Sep 18 2011 *)

%o (Haskell)

%o a069107 n = a069107_list !! (n-1)

%o a069107_list = h 2 $ drop 3 a000045_list where

%o h n (fib:fibs) = if fib `mod` n > 0 || a010051 n == 1

%o then h (n+1) fibs else n : h (n+1) fibs

%o -- _Reinhard Zumkeller_, Oct 13 2011

%o (PARI) is(n)=((Mod([1,1;1,0],n))^(n+1))[1,2]==0 && !isprime(n) && n>1 \\ _Charles R Greathouse IV_, Oct 07 2016

%Y Cf. A045468, A003631, A064739, A081264 (Fibonacci pseudoprimes).

%Y Cf. A000045, A010051, A023172, A069104.

%K nice,nonn

%O 1,1

%A _Benoit Cloitre_, Apr 06 2002

%E Corrected by _Ralf Stephan_, Oct 17 2002