login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069106 Composite n such that n divides F(n-1) where F(k) are the Fibonacci numbers. 11
442, 1891, 2737, 4181, 6601, 6721, 8149, 13201, 13981, 15251, 17119, 17711, 30889, 34561, 40501, 51841, 52701, 64079, 64681, 67861, 68101, 68251, 78409, 88601, 88831, 90061, 96049, 97921, 115231, 118441, 138601, 145351, 146611, 150121, 153781, 163081, 179697, 186961, 191351, 194833 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes p congruent to 1 or 4 (mod 5) divide F(p-1) (cf. A045468 and Hardy and Wright, An introduction to number theory, Chap. X, p. 150, Oxford University Press, Fifth edition).

LINKS

Giovanni Resta, Table of n, a(n) for n = 1..1000

MATHEMATICA

A069106[nn_] := Select[Complement[Range[2, nn], Prime[Range[2, PrimePi[ nn]]]], Divisible[ Fibonacci[ #-1], #]&] (* Harvey P. Dale, Jul 05 2011 *)

PROG

(C) #include <stdio.h> #include <gmp.h> #define STARTN 10 #define N_OF_MILLER_RABIN_TESTS 5 int main() { mpz_t n, f1, f2; int flag=0; /* flag? 0: f1 contains current F[n-1] 1: f2 = F[n-1] */ mpz_set_ui (n, STARTN); mpz_init (f1); mpz_init (f2); mpz_fib2_ui (f1, f2, STARTN-1); for (;; ) { if (mpz_probab_prime_p (n, N_OF_MILLER_RABIN_TESTS)) goto next_iter; if (mpz_divisible_p (!flag? f1:f2, n)) { mpz_out_str (stdout, 10, n); printf (" "); fflush (stdout); } next_iter: mpz_add_ui (n, n, 1); mpz_add (!flag? f2:f1, f1, f2); flag = !flag; } }

(Haskell)

a069106 n = a069106_list !! (n-1)

a069106_list = [x | x <- a002808_list, a000045 (x-1) `mod` x == 0]

-- Reinhard Zumkeller, Jul 19 2013

(PARI) fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]

is(n)=!isprime(n) && !fibmod(n-1, n) && n>1 \\ Charles R Greathouse IV, Oct 06 2016

CROSSREFS

Subsequence of A123976.

Cf. A045468, A003631, A064739, A081264 (Fibonacci pseudoprimes).

Cf. A002808, A000045.

Sequence in context: A075268 A158322 A031720 * A094410 A236706 A105922

Adjacent sequences:  A069103 A069104 A069105 * A069107 A069108 A069109

KEYWORD

easy,nice,nonn

AUTHOR

Benoit Cloitre, Apr 06 2002

EXTENSIONS

Corrected and extended (with C program) by Ralf Stephan, Oct 13 2002

a(35)-a(40) added by Reinhard Zumkeller, Jul 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 16:48 EST 2020. Contains 331173 sequences. (Running on oeis4.)