login
A069106
Composite numbers k such that k divides F(k-1) where F(j) are the Fibonacci numbers.
11
442, 1891, 2737, 4181, 6601, 6721, 8149, 13201, 13981, 15251, 17119, 17711, 30889, 34561, 40501, 51841, 52701, 64079, 64681, 67861, 68101, 68251, 78409, 88601, 88831, 90061, 96049, 97921, 115231, 118441, 138601, 145351, 146611, 150121, 153781, 163081, 179697, 186961, 191351, 194833
OFFSET
1,1
COMMENTS
Primes p congruent to 1 or 4 (mod 5) divide F(p-1) (cf. A045468 and [Hardy and Wright]).
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth edition), Oxford Univ. Press (Clarendon), 1979, Chap. X, p. 150.
LINKS
MATHEMATICA
A069106[nn_] := Select[Complement[Range[2, nn], Prime[Range[2, PrimePi[ nn]]]], Divisible[ Fibonacci[ #-1], #]&] (* Harvey P. Dale, Jul 05 2011 *)
PROG
(C) #include <stdio.h> #include <gmp.h> #define STARTN 10 #define N_OF_MILLER_RABIN_TESTS 5 int main() { mpz_t n, f1, f2; int flag=0; /* flag? 0: f1 contains current F[n-1] 1: f2 = F[n-1] */ mpz_set_ui (n, STARTN); mpz_init (f1); mpz_init (f2); mpz_fib2_ui (f1, f2, STARTN-1); for (;; ) { if (mpz_probab_prime_p (n, N_OF_MILLER_RABIN_TESTS)) goto next_iter; if (mpz_divisible_p (!flag? f1:f2, n)) { mpz_out_str (stdout, 10, n); printf (" "); fflush (stdout); } next_iter: mpz_add_ui (n, n, 1); mpz_add (!flag? f2:f1, f1, f2); flag = !flag; } }
(Haskell)
a069106 n = a069106_list !! (n-1)
a069106_list = [x | x <- a002808_list, a000045 (x-1) `mod` x == 0]
-- Reinhard Zumkeller, Jul 19 2013
(PARI) fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
is(n)=!isprime(n) && !fibmod(n-1, n) && n>1 \\ Charles R Greathouse IV, Oct 06 2016
CROSSREFS
Subsequence of A123976.
Cf. A045468, A003631, A064739, A081264 (Fibonacci pseudoprimes).
Sequence in context: A332531 A158322 A031720 * A094410 A236706 A105922
KEYWORD
easy,nice,nonn
AUTHOR
Benoit Cloitre, Apr 06 2002
EXTENSIONS
Corrected and extended (with C program) by Ralf Stephan, Oct 13 2002
a(35)-a(40) added by Reinhard Zumkeller, Jul 19 2013
STATUS
approved