OFFSET
0,3
COMMENTS
For the generalized Fibonacci sequences U(n-1;a) = (ap(a)^n - am(a)^n)/(ap(a) - am(a)) with ap(a) = (a + sqrt(a^2+4))/2, am(a) = (a - sqrt(a^2+4))/2, a from the integers, one has for the squared sequences U(n-1;a)^2 = (2*T(n,(a^2+2)/2) - 2*(-1)^n)/(a^2+4). Here T(n,x) are Chebyshev's polynomials of the first kind (see A053120). Therefore the o.g.f. for the squared sequence is x*(1-x)/((1+x)*(1-(a^2+2)*x+x^2)) = x*(1-x)/(1 - (a^2+1)*x - (a^2+1)*x^2 + x^3). For this example a=4.
Unsigned member r=-16 of the family of Chebyshev sequences S_r(n) defined in A092184.
(-1)^(n+1)*a(n) = S_{-16}(n), n >= 0, defined in A092184.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2)-fences if there are 4 kinds of half-squares available. A (w,g)-fence is a tile composed of two w X 1 pieces separated horizontally by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,1/4)-fences and (1/4,3/4)-fences if there are 4 kinds of (1/4,1/4)-fences available. - Michael A. Allen, Mar 12 2023
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..750
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
Index entries for linear recurrences with constant coefficients, signature (17,17,-1).
FORMULA
a(n) = A001076(n)^2.
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3), n >= 3, a(0)=0, a(1)=1, a(2)=16.
a(n) = 18*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2, a(0)=0, a(1)=1.
a(n) = (T(n, 9) - (-1)^n)/10 with Chebyshev's T(n, x) polynomials of the first kind. T(n, 9) = A023039(n).
G.f.: x*(1-x)/((1+x)*(1-18*x+x^2)) = x*(1-x)/(1-17*x-17*x^2+x^3).
a(n) = a(n-1) + A001654(3*n-2) with a(0)=0, where A001654 are the golden rectangle numbers. - Johannes W. Meijer, Sep 22 2010
a(n+1) = (1 + (-1)^n)/2 + 16*Sum_{r=1..n} ( r*a(n+1-r) ). - Michael A. Allen, Mar 12 2023
E.g.f.: exp(-x)*(exp(10*x)*cosh(4*sqrt(5)*x) - 1)/10. - Stefano Spezia, Apr 06 2023
MAPLE
with (combinat):seq(fibonacci(n, 4)^2, n=0..16); # Zerinvary Lajos, Apr 09 2008
nmax:=48: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: for n from 1 to nmax/3 do a(n):=a(n-1)+A001654(3*n-2) od: seq(a(n), n=0..nmax/3); # Johannes W. Meijer, Sep 22 2010
MATHEMATICA
LinearRecurrence[{17, 17, -1}, {0, 1, 16}, 30] (* Harvey P. Dale, Mar 26 2012 *)
Fibonacci[3*Range[0, 30]]^2/4 (* G. C. Greubel, Aug 18 2022 *)
PROG
(MuPAD) numlib::fibonacci(3*n)^2/4 $ n = 0..35; // Zerinvary Lajos, May 13 2008
(Sage) [(fibonacci(3*n))^2/4 for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
(PARI) my(x='x+O('x^99)); concat([0], Vec(x*(1-x)/((1-18*x+x^2)*(1+x)))) \\ Altug Alkan, Dec 17 2017
(Magma) [Fibonacci(3*n)^2/4: n in [0..30]]; // G. C. Greubel, Aug 18 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 18 2004
STATUS
approved