The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099279 Squares of A001076 (generalized Fibonacci). 7
 0, 1, 16, 289, 5184, 93025, 1669264, 29953729, 537497856, 9645007681, 173072640400, 3105662519521, 55728852710976, 1000013686278049, 17944517500293904, 322001301319012225, 5778078906241926144 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For the generalized Fibonacci sequences U(n-1;a):=(ap(a)^n - am(a)^n)/(ap(a)-am(a)) with ap(a):=(a+sqrt(a^2+4))/2, am(a):=(a-sqrt(a^2+4))/2, a from the integers, one has for the squared sequences U(n-1;a)^2 = (2*T(n,(a^2+2)/2) - 2*(-1)^n)/(a^2+4). Here T(n,x) are Chebyshev's polynomials of the first kind (see A053120). Therefore the o.g.f. for the squared sequence is x*(1-x)/((1-(a^2+2)*x+x^2)*(1+x)) = x*(1-x)/(1-(a^2+1)*x-(a^2+1)*x^2+x^3). For this example a=4. Unsigned member r=-16 of the family of Chebyshev sequences S_r(n) defined in A092184. ((-1)^(n+1))*a(n) = S_{-16}(n), n>=0, defined in A092184. LINKS Index entries for linear recurrences with constant coefficients, signature (17, 17, -1). FORMULA a(n) = A001076(n)^2. a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3), n >= 3; a(0)=0, a(1)=1, a(2)=16. a(n) = 18*a(n-1) - a(n-2) - 2*(-1)^n, n > =2; a(0)=0, a(1)=1. a(n) = (T(n, 9) - (-1)^n)/10 with Chebyshev's T(n, x) polynomials of the first kind. T(n, 9)=A023039(n). G.f.: x*(1-x)/((1-18*x+x^2)*(1+x)) = x*(1-x)/(1-17*x-17*x^2+x^3). a(n) = -(1/10)*(-1)^n + (1/20)*(9-4*sqrt(5))^n + (1/20)*(9+4*sqrt(5))^n, with n >= 0. - Paolo P. Lava, Aug 27 2008 a(n) = a(n-1) + A001654(3*n-2) with a(0)=0, where A001654 are the golden rectangle numbers. - Johannes W. Meijer, Sep 22 2010 MAPLE with (combinat):seq(fibonacci(n, 4)^2, n=0..16); # Zerinvary Lajos, Apr 09 2008 nmax:=48: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: for n from 1 to nmax/3 do a(n):=a(n-1)+A001654(3*n-2) od: seq(a(n), n=0..nmax/3); # Johannes W. Meijer, Sep 22 2010 MATHEMATICA LinearRecurrence[{17, 17, -1}, {0, 1, 16}, 30] (* Harvey P. Dale, Mar 26 2012 *) PROG (MuPAD) numlib::fibonacci(3*n)^2/4 \$ n = 0..35; // Zerinvary Lajos, May 13 2008 (Sage) [(fibonacci(3*n))^2/4 for n in range(0, 17)] # Zerinvary Lajos, May 15 2009 (PARI) x='x+O('x^99); concat([0], Vec(x*(1-x)/((1-18*x+x^2)*(1+x)))) \\ Altug Alkan, Dec 17 2017 CROSSREFS Cf. A007598, A079291, A092936, A099365-6 (other square sequences of this type). Sequence in context: A225194 A027776 A140770 * A202878 A183886 A230341 Adjacent sequences:  A099276 A099277 A099278 * A099280 A099281 A099282 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Oct 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 18:19 EST 2021. Contains 349467 sequences. (Running on oeis4.)