login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099276
Unsigned member r=-18 of the family of Chebyshev sequences S_r(n) defined in A092184.
0
0, 1, 18, 361, 7200, 143641, 2865618, 57168721, 1140508800, 22753007281, 453919636818, 9055639729081, 180658874944800, 3604121859166921, 71901778308393618, 1434431444308705441, 28616727107865715200
OFFSET
0,3
COMMENTS
((-1)^(n+1))*a(n) = S_{-18}(n), n>=0, defined in A092184.
FORMULA
a(n)= 20*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.
a(n)= 19*a(n-1) + 19*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=18.
G.f.: x*(1-x)/((1+x)*(1-20*x+x^2)) = x*(1-x)/(1-19*x-19*x^2+x^3) (from the Stephan link, see A092184).
a(n)= (T(n, 10)-(-1)^n)/11, with Chebyshev's polynomials of the first kind evaluated at x=10: T(n, 10)=A001085(n)=((10+3*sqrt(11))^n + (10-3*sqrt(11))^n)/2.
MATHEMATICA
LinearRecurrence[{19, 19, -1}, {0, 1, 18}, 30] (* Harvey P. Dale, Sep 08 2024 *)
CROSSREFS
Sequence in context: A320764 A086502 A259459 * A221348 A285400 A324431
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 18 2004
STATUS
approved