|
|
A099276
|
|
Unsigned member r=-18 of the family of Chebyshev sequences S_r(n) defined in A092184.
|
|
0
|
|
|
0, 1, 18, 361, 7200, 143641, 2865618, 57168721, 1140508800, 22753007281, 453919636818, 9055639729081, 180658874944800, 3604121859166921, 71901778308393618, 1434431444308705441, 28616727107865715200
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
((-1)^(n+1))*a(n) = S_{-18}(n), n>=0, defined in A092184.
|
|
LINKS
|
|
|
FORMULA
|
a(n)= 20*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.
a(n)= 19*a(n-1) + 19*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=18.
G.f.: x*(1-x)/((1+x)*(1-20*x+x^2)) = x*(1-x)/(1-19*x-19*x^2+x^3) (from the Stephan link, see A092184).
a(n)= (T(n, 10)-(-1)^n)/11, with Chebyshev's polynomials of the first kind evaluated at x=10: T(n, 10)=A001085(n)=((10+3*sqrt(11))^n + (10-3*sqrt(11))^n)/2.
|
|
MATHEMATICA
|
LinearRecurrence[{19, 19, -1}, {0, 1, 18}, 30] (* Harvey P. Dale, Sep 08 2024 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|