login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Unsigned member r=-18 of the family of Chebyshev sequences S_r(n) defined in A092184.
0

%I #10 Sep 08 2024 12:10:26

%S 0,1,18,361,7200,143641,2865618,57168721,1140508800,22753007281,

%T 453919636818,9055639729081,180658874944800,3604121859166921,

%U 71901778308393618,1434431444308705441,28616727107865715200

%N Unsigned member r=-18 of the family of Chebyshev sequences S_r(n) defined in A092184.

%C ((-1)^(n+1))*a(n) = S_{-18}(n), n>=0, defined in A092184.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (19,19,-1)>

%F a(n)= 20*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.

%F a(n)= 19*a(n-1) + 19*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=18.

%F G.f.: x*(1-x)/((1+x)*(1-20*x+x^2)) = x*(1-x)/(1-19*x-19*x^2+x^3) (from the Stephan link, see A092184).

%F a(n)= (T(n, 10)-(-1)^n)/11, with Chebyshev's polynomials of the first kind evaluated at x=10: T(n, 10)=A001085(n)=((10+3*sqrt(11))^n + (10-3*sqrt(11))^n)/2.

%t LinearRecurrence[{19,19,-1},{0,1,18},30] (* _Harvey P. Dale_, Sep 08 2024 *)

%K nonn,easy

%O 0,3

%A _Wolfdieter Lang_, Oct 18 2004