login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081422
Triangle read by rows in which row n consists of the first n+1 n-gonal numbers.
9
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 51, 1, 6, 15, 28, 45, 66, 91, 1, 7, 18, 34, 55, 81, 112, 148, 1, 8, 21, 40, 65, 96, 133, 176, 225, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Polygonal Number
FORMULA
Array of coefficients of x in the expansions of T(k, x) = (1 + k*x -(k-2)*x^2)/(1-x)^4, k > -4.
T(n, k) = k*((n-2)*k -(n-4))/2 (see MathWorld link). - Michel Marcus, Jun 22 2015
EXAMPLE
The array starts
1 1 3 10 ...
1 2 6 16 ...
1 3 9 22 ...
1 4 12 28 ...
The triangle starts
1;
1, 1;
1, 2, 3;
1, 3, 6, 10;
1, 4, 9, 16, 25;
...
MATHEMATICA
Table[PolygonalNumber[n, i], {n, 0, 10}, {i, n+1}]//Flatten (* Requires Mathematica version 10.4 or later *) (* Harvey P. Dale, Aug 27 2016 *)
PROG
(PARI) tabl(nn) = {for (n=0, nn, for (k=1, n+1, print1(k*((n-2)*k-(n-4))/2, ", "); ); print(); ); } \\ Michel Marcus, Jun 22 2015
(Magma) [[k*((n-2)*k-(n-4))/2: k in [1..n+1]]: n in [0..10]]; // G. C. Greubel, Oct 13 2018
(Sage) [[k*((n-2)*k -(n-4))/2 for k in (1..n+1)] for n in (0..10)] # G. C. Greubel, Aug 14 2019
(GAP) Flat(List([0..10], n-> List([1..n+1], k-> k*((n-2)*k-(n-4))/2 ))); # G. C. Greubel, Aug 14 2019
CROSSREFS
Antidiagonals are composed of n-gonal numbers.
Sequence in context: A208516 A111808 A247046 * A213742 A213743 A213744
KEYWORD
easy,nonn,tabl,look
AUTHOR
Paul Barry, Mar 21 2003
STATUS
approved