

A081421


Quotient after one division by 2 of numbers of the form 3^(2n) + 5^(2n).


0



1, 17, 353, 8177, 198593, 4912337, 122336033, 3054149297, 76315468673, 1907542343057, 47685459212513, 1192108586037617, 29802463602463553, 745059330625296977, 18626462930705797793, 465661390253305305137
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Except for the first term, these numbers always end in 3 and 7 and necessarily generate an odd number as the quotient upon a single division by 2. Indeed for even n, 3^n+5^n can be written as (41)^n + (4+1)^n = 4h+1 + 4i+1 for some h,i. Then we add and get 4(h+i)+2. Divide by 2 to get 2(h+i) + 1 and odd number.


LINKS

Table of n, a(n) for n=0..15.


PROG

(PARI) p3np5n(n) = { forstep(x=0, n, 2, y = (3^x + 5^x)/2; print1(y" ") ) }


CROSSREFS

Sequence in context: A324449 A191589 A194729 * A121824 A120287 A222678
Adjacent sequences: A081418 A081419 A081420 * A081422 A081423 A081424


KEYWORD

easy,nonn


AUTHOR

Cino Hilliard, Apr 20 2003


STATUS

approved



