OFFSET
1,2
COMMENTS
Since the last occurrence of n comes one before the first occurrence of n+1 and the former is at Sum_{i=0..n} i^2 = A000330(n), we have a(A000330(n)) = a(n*(n+1)*(2n+1)/6) = n and a(1+A000330(n)) = a(1+(n*(n+1)*(2n+1)/6)) = n+1. So the current sequence is, loosely speaking, the inverse function of the square pyramidal sequence A000330. A000330 has many alternative formulas, thus yielding many alternative formulas for the current sequence. - Jonathan Vos Post, Mar 18 2006
Partial sums of A253903. - Jeremy Gardiner, Jan 14 2018
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..9455 (Table of squares from 1 X 1 to 30 X 30, flattened)
Y.-F. S. Petermann, J.-L. Remy and I. Vardi, Discrete derivatives of sequences, Adv. in Appl. Math. 27 (2001), 562-84.
FORMULA
For 1 <= n <= 650, a(n) = floor((3n)^(1/3)+1/2). - Mikael Aaltonen, Jan 05 2015
a(n) = 1 + floor( t(n) + 1 / ( 12 * t(n) ) - 1/2 ), where t(n) = (sqrt(3888*(n-1)^2-1) / (8*3^(3/2)) + 3 * (n-1)/2 ) ^(1/3). - Mikael Aaltonen, Mar 01 2015
a(n) = floor(t + 1/(12*t) + 1/2), where t = (3*n - 1)^(1/3). - Ridouane Oudra, Oct 30 2023
a(n) = m+1 if n > m(m+1)(2m+1)/6 and a(n) = m otherwise where m = floor((3n)^(1/3)). - Chai Wah Wu, Nov 04 2024
EXAMPLE
This can be viewed also as an irregular table consisting of successively larger square matrices:
1;
2, 2;
2, 2;
3, 3, 3;
3, 3, 3;
3, 3, 3;
4, 4, 4, 4;
4, 4, 4, 4;
4, 4, 4, 4;
4, 4, 4, 4;
etc.
MATHEMATICA
Table[n, {n, 0, 6}, {n^2}] // Flatten (* Arkadiusz Wesolowski, Jan 13 2013 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library. This uses starting offset=1)
(PARI) A074279_vec(N=9)=concat(vector(N, i, vector(i^2, j, i))) \\ Note: This creates a vector; use A074279_vec()[n] to get the n-th term. - M. F. Hasler, Feb 17 2014
(Python)
from sympy import integer_nthroot
def A074279(n): return (m:=integer_nthroot(3*n, 3)[0])+(6*n>m*(m+1)*((m<<1)+1)) # Chai Wah Wu, Nov 04 2024
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Jon Perry, Sep 21 2002
EXTENSIONS
Offset corrected from 0 to 1 by Antti Karttunen, Feb 08 2014
STATUS
approved