login
A072750
Counting factor 7 in the first n squarefree numbers.
5
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12
OFFSET
1,10
LINKS
FORMULA
a(n) - a(n-1) = 1 if A005117(n) is in A008589, otherwise 0. - Robert Israel, Aug 23 2015
a(n) ~ n/8. - Amiram Eldar, Feb 24 2021
EXAMPLE
The first 10 squarefree numbers are: 1, 2, 3, 5, 6=2*3, 7, 10=2*5, 11, 13 and 14=2*7: 7 and 14 are divisible by 7, therefore a(10)=2.
MAPLE
N:= 1000: # to use the squarefree numbers <= N
M:= map(proc(t) if numtheory:-issqrfree(t) then if t mod 7 = 0 then 1 else 0 fi fi end proc, [$1..N]):
ListTools:-PartialSums(M); # Robert Israel, Aug 23 2015
MATHEMATICA
With[{sf=Select[Range[200], SquareFreeQ]}, Accumulate[If[Divisible[#, 7], 1, 0]&/@sf]] (* Harvey P. Dale, Mar 21 2013 *)
PROG
(Haskell)
a072750 n = a072750_list !! (n-1)
a072750_list = scanl1 (+) $ map ((0 ^) . (`mod` 7)) a005117_list
-- Reinhard Zumkeller, Mar 25 2013
(PARI)
n = 94; k = 0; bag = List(); a = vector(n);
until(n == 0, k++; if (issquarefree(k), listput(bag, k); n--));
for (i=2, #bag, a[i] = a[i-1] + (bag[i] % 7 == 0));
print(a); \\ Gheorghe Coserea, Aug 23 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 08 2002
EXTENSIONS
Name clarified by Gheorghe Coserea, Aug 23 2015
STATUS
approved