%I #24 Feb 24 2021 03:51:34
%S 0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,
%T 5,5,5,5,5,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,
%U 9,9,9,9,9,9,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,12
%N Counting factor 7 in the first n squarefree numbers.
%H Reinhard Zumkeller, <a href="/A072750/b072750.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) - a(n-1) = 1 if A005117(n) is in A008589, otherwise 0. - _Robert Israel_, Aug 23 2015
%F a(n) ~ n/8. - _Amiram Eldar_, Feb 24 2021
%e The first 10 squarefree numbers are: 1, 2, 3, 5, 6=2*3, 7, 10=2*5, 11, 13 and 14=2*7: 7 and 14 are divisible by 7, therefore a(10)=2.
%p N:= 1000: # to use the squarefree numbers <= N
%p M:= map(proc(t) if numtheory:-issqrfree(t) then if t mod 7 = 0 then 1 else 0 fi fi end proc, [$1..N]):
%p ListTools:-PartialSums(M); # _Robert Israel_, Aug 23 2015
%t With[{sf=Select[Range[200],SquareFreeQ]},Accumulate[If[Divisible[#,7],1,0]&/@sf]] (* _Harvey P. Dale_, Mar 21 2013 *)
%o (Haskell)
%o a072750 n = a072750_list !! (n-1)
%o a072750_list = scanl1 (+) $ map ((0 ^) . (`mod` 7)) a005117_list
%o -- _Reinhard Zumkeller_, Mar 25 2013
%o (PARI)
%o n = 94; k = 0; bag = List(); a = vector(n);
%o until(n == 0, k++; if (issquarefree(k), listput(bag, k); n--));
%o for (i=2, #bag, a[i] = a[i-1] + (bag[i] % 7 == 0));
%o print(a); \\ _Gheorghe Coserea_, Aug 23 2015
%Y Cf. A005117, A008589, A072747, A072748, A072749, A072751.
%K nonn
%O 1,10
%A _Reinhard Zumkeller_, Jul 08 2002
%E Name clarified by _Gheorghe Coserea_, Aug 23 2015