Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #68 Nov 05 2024 12:17:36
%S 1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,
%T 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,
%U 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
%N n appears n^2 times.
%C Since the last occurrence of n comes one before the first occurrence of n+1 and the former is at Sum_{i=0..n} i^2 = A000330(n), we have a(A000330(n)) = a(n*(n+1)*(2n+1)/6) = n and a(1+A000330(n)) = a(1+(n*(n+1)*(2n+1)/6)) = n+1. So the current sequence is, loosely speaking, the inverse function of the square pyramidal sequence A000330. A000330 has many alternative formulas, thus yielding many alternative formulas for the current sequence. - _Jonathan Vos Post_, Mar 18 2006
%C Partial sums of A253903. - _Jeremy Gardiner_, Jan 14 2018
%H Antti Karttunen, <a href="/A074279/b074279.txt">Table of n, a(n) for n = 1..9455</a> (Table of squares from 1 X 1 to 30 X 30, flattened)
%H Y.-F. S. Petermann, J.-L. Remy and I. Vardi, <a href="http://dx.doi.org/10.1006/aama.2001.0750">Discrete derivatives of sequences</a>, Adv. in Appl. Math. 27 (2001), 562-84.
%F For 1 <= n <= 650, a(n) = floor((3n)^(1/3)+1/2). - _Mikael Aaltonen_, Jan 05 2015
%F a(n) = 1 + floor( t(n) + 1 / ( 12 * t(n) ) - 1/2 ), where t(n) = (sqrt(3888*(n-1)^2-1) / (8*3^(3/2)) + 3 * (n-1)/2 ) ^(1/3). - _Mikael Aaltonen_, Mar 01 2015
%F a(n) = floor(t + 1/(12*t) + 1/2), where t = (3*n - 1)^(1/3). - _Ridouane Oudra_, Oct 30 2023
%F a(n) = m+1 if n > m(m+1)(2m+1)/6 and a(n) = m otherwise where m = floor((3n)^(1/3)). - _Chai Wah Wu_, Nov 04 2024
%e This can be viewed also as an irregular table consisting of successively larger square matrices:
%e 1;
%e 2, 2;
%e 2, 2;
%e 3, 3, 3;
%e 3, 3, 3;
%e 3, 3, 3;
%e 4, 4, 4, 4;
%e 4, 4, 4, 4;
%e 4, 4, 4, 4;
%e 4, 4, 4, 4;
%e etc.
%e When this is used with any similarly organized sequence, a(n) is the index of the matrix in whose range n is. A121997(n) (= A237451(n)+1) and A238013(n) (= A237452(n)+1) would then yield the index of the column and row within that matrix.
%t Table[n, {n, 0, 6}, {n^2}] // Flatten (* _Arkadiusz Wesolowski_, Jan 13 2013 *)
%o (Scheme, with Antti Karttunen's IntSeq-library. This uses starting offset=1)
%o (define A074279 (LEAST-GTE-I 1 1 A000330));; _Antti Karttunen_, Feb 08 2014
%o (PARI) A074279_vec(N=9)=concat(vector(N,i,vector(i^2,j,i))) \\ Note: This creates a vector; use A074279_vec()[n] to get the n-th term. - _M. F. Hasler_, Feb 17 2014
%o (Python)
%o from sympy import integer_nthroot
%o def A074279(n): return (m:=integer_nthroot(3*n,3)[0])+(6*n>m*(m+1)*((m<<1)+1)) # _Chai Wah Wu_, Nov 04 2024
%Y Cf. A000217, A000330, A002024, A006331, A050446, A050447, A000537, A006003, A005900, A064866, A237451, A237452.
%K nonn,tabf
%O 1,2
%A _Jon Perry_, Sep 21 2002
%E Offset corrected from 0 to 1 by _Antti Karttunen_, Feb 08 2014