login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061599
Primes p such that the greatest prime divisor of p-1 is 5.
3
11, 31, 41, 61, 101, 151, 181, 241, 251, 271, 401, 541, 601, 641, 751, 811, 1201, 1601, 1621, 1801, 2161, 2251, 3001, 4001, 4051, 4801, 4861, 6481, 7681, 8101, 8641, 9001, 9601, 9721, 11251, 14401, 15361, 16001, 19441, 21601, 21871, 22501, 23041, 24001
OFFSET
1,1
COMMENTS
Prime numbers n for which cos(2Pi/n) is an algebraic number of 5th degree. - Artur Jasinski, Dec 13 2006
The least significant digit of each term is one. - Harvey P. Dale, Jul 07 2024
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
Primes of the form 2^a*3^b*5^c + 1 with a and c > 0.
MATHEMATICA
Do[If[Take[FactorInteger[EulerPhi[2n + 1]][[ -1]], 1] == {5} && PrimeQ[2n + 1], Print[2n + 1]], {n, 1, 10000}] (* Artur Jasinski, Dec 13 2006 *)
Select[Prime[Range[3000]], Max[FactorInteger[#-1][[;; , 1]]]==5&] (* Harvey P. Dale, Jul 07 2024 *)
PROG
(PARI) { default(primelimit, 167772161); n=0; forprime (p=3, 167772161, f=factor(p - 1)~; if (f[1, length(f)]==5, write("b061599.txt", n++, " ", p)) ) } \\ Harry J. Smith, Jul 25 2009
(PARI) list(lim)=my(v=List(), s, t); lim\=1; lim--; for(i=1, logint(lim\2, 5), t=2*5^i; for(j=0, logint(lim\t, 3), s=t*3^j; while(s<=lim, if(isprime(s+1), listput(v, s+1)); s<<=1))); Set(v) \\ Charles R Greathouse IV, Oct 29 2018
CROSSREFS
The 3rd in a family of sequences after A019434(=Fermat-primes) and A058383.
Sequence in context: A287312 A240896 A040985 * A374028 A374029 A153128
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 13 2001
STATUS
approved