login
A240896
Consider a number of k digits n = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1). Sequence lists the numbers n such that sigma(n) - n = Sum_{i=1..k-1}{phi(Sum_{j=1..i}{d_(j)*10^(j-1)})} (see example below).
2
11, 31, 41, 61, 71, 4351, 801121, 100484911
OFFSET
1,1
COMMENTS
a(9) > 10^10. - Giovanni Resta, Apr 16 2014
EXAMPLE
If n = 4351, starting from the least significant digit, let us cut the number into the set 1, 51, 351. We have:
phi(1) = 1;
phi(51) = 32;
phi(351) = 216
and 1 + 32 + 216 = 249 = sigma(4351) - 4351.
MAPLE
with(numtheory); P:=proc(q) local a, k, n;
for n from 2 to q do a:=0; k:=1; while (n mod 10^k)<n do
a:=a+phi(n mod 10^k); k:=k+1; od;
if sigma(n)-n=a then print(n); fi; od; end: P(10^9);
KEYWORD
nonn,more,base
AUTHOR
Paolo P. Lava, Apr 14 2014
EXTENSIONS
a(7)-a(8) from Giovanni Resta, Apr 16 2014
STATUS
approved