login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240895
Consider a number of k digits n = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1). Sequence lists the numbers n such that sigma(n) - n = Sum_{i=1..k-1}{sigma(Sum_{j=1..i}{d_(j)*10^(j-1)})} (see example below).
2
11, 25, 31, 41, 61, 71, 341, 671, 2119, 10231, 39579, 52231, 60341, 402959, 1288689, 1393059, 1956759, 16752951, 108659999, 181704519, 794033191, 1062726071, 3518397571, 4062296851, 4085227151, 7015608139
OFFSET
1,1
COMMENTS
a(27) > 10^10. - Giovanni Resta, Apr 16 2014
EXAMPLE
If n = 52231, starting from the least significant digit, let us cut the number into the set 1, 31, 231, 2231. We have:
sigma(1) = 1;
sigma(31) = 32;
sigma(231) = 384;
sigma(2231) = 2352
and 1 + 32 + 384 + 2352 = 2769 = sigma(52231) - 52231.
MAPLE
with(numtheory); P:=proc(q) local a, k, n;
for n from 2 to q do a:=0; k:=1; while (n mod 10^k)<n do
a:=a+sigma(n mod 10^k); k:=k+1; od;
if sigma(n)-n=a then print(n); fi; od; end: P(10^9);
CROSSREFS
KEYWORD
nonn,more,base
AUTHOR
Paolo P. Lava, Apr 14 2014
EXTENSIONS
a(14), a(18)-a(26) from Giovanni Resta, Apr 16 2014
STATUS
approved