login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061602
Sum of factorials of the digits of n.
45
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 2, 2, 3, 7, 25, 121, 721, 5041, 40321, 362881, 3, 3, 4, 8, 26, 122, 722, 5042, 40322, 362882, 7, 7, 8, 12, 30, 126, 726, 5046, 40326, 362886, 25, 25, 26, 30, 48, 144, 744, 5064, 40344, 362904, 121, 121, 122, 126
OFFSET
0,3
COMMENTS
Numbers n such that a(n) = n are known as factorions. It is known that there are exactly four of these [in base 10]: 1, 2, 145, 40585. - Amarnath Murthy
The sum of factorials of the digits is the same for 0, 1, 2 in any base. - Alonso del Arte, Oct 21 2012
LINKS
Harry J. Smith and Indranil Ghosh, Table of n, a(n) for n = 0..10000 (first 1001 terms from Harry J. Smith)
H. J. J. te Riele, Iteration of number-theoretic functions, Nieuw Archief v. Wiskunde, (4) 1 (1983), 345-360. See Example I.1.b.
Eric Weisstein's World of Mathematics, Factorion.
EXAMPLE
a(24) = (2!) + (4!) = 2 + 24 = 26.
a(153) = 127 because 1! + 5! + 3! = 1 + 120 + 6 = 127.
MAPLE
A061602 := proc(n)
add(factorial(d), d=convert(n, base, 10)) ;
end proc: # R. J. Mathar, Dec 18 2011
MATHEMATICA
a[n_] := Total[IntegerDigits[n]! ]; Table[a[n], {n, 1, 53}] (* Saif Hakim (saif7463(AT)gmail.com), Apr 23 2006 *)
PROG
(PARI) a(n) = { if(n==0, 1, my(d=digits(n)); sum(i=1, #d, d[i]!)) } \\ Harry J. Smith, Jul 25 2009
(Magma) a061602:=func< n | n eq 0 select 1 else &+[ Factorial(d): d in Intseq(n) ] >; [ a061602(n): n in [0..60] ]; // Klaus Brockhaus, Nov 23 2010
(Python)
import math
def A061602(n):
s=0
for i in str(n):
s+=math.factorial(int(i))
return s # Indranil Ghosh, Jan 11 2017
(R)
i=0
values <- c()
while (i<1000) {
values[i+1] <- A061602(i)
i=i+1
}
plot(values)
A061602 <- function(n) {
sum=0;
numberstring <- paste0(i)
numberstring_split <- strsplit(numberstring, "")[[1]]
for (number in numberstring_split) {
sum = sum+factorial(as.numeric(number))
}
return(sum)
}
# Raphaël Deknop, Nov 08 2021
CROSSREFS
Cf. A061603, A108911, A193163, A165451 (places of primes).
Sequence in context: A066459 A269221 A071937 * A182287 A248778 A033647
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, May 19 2001
EXTENSIONS
Corrected and extended by Vladeta Jovovic, May 19 2001
Link and amended comment by Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 12 2004
STATUS
approved