login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306955 Let f map k to the sum of the factorials of the digits of k (A061602); sequence lists numbers such that f(f(f(k)))=k. 5
1, 2, 145, 169, 1454, 40585, 363601 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Kiss showed that there are no further terms and in fact there are no further cycles other than those shown in A014080 and A254499.
REFERENCES
P. Kiss, A generalization of a problem in number theory, Math. Sem. Notes Kobe Univ., 5 (1977), no. 3, 313-317. MR 0472667 (57 #12362).
LINKS
P. Kiss, A generalization of a problem in number theory, [Hungarian], Mat. Lapok, 25 (No. 1-2, 1974), 145-149.
G. D. Poole, Integers and the sum of the factorials of their digits, Math. Mag., 44 (1971), 278-279, [JSTOR].
H. J. J. te Riele, Iteration of number-theoretic functions, Nieuw Archief v. Wiskunde, (4) 1 (1983), 345-360. See Example I.1.b.
EXAMPLE
The map f sends 169 to 363601 to 1454 to 169 ...
MATHEMATICA
f[k_] := Total[IntegerDigits[k]!]; Select[Range[400000], Nest[f, #, 3] == # &] (* Amiram Eldar, Mar 17 2019 *)
PROG
(PARI) a061602(n) = my(d=digits(n)); sum(i=1, #d, d[i]!)
is(n) = a061602(a061602(a061602(n)))==n \\ Felix Fröhlich, May 18 2019
CROSSREFS
Cf. A061602.
The fixed points and loops of length 2 can be found in A014080, A214285, and A254499.
Sequence in context: A093002 A074319 A188284 * A228507 A254499 A071064
KEYWORD
nonn,fini,full,base
AUTHOR
N. J. A. Sloane, Mar 17 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 03:15 EDT 2024. Contains 371696 sequences. (Running on oeis4.)