OFFSET
0,2
COMMENTS
1/2^10 of twelfth unsigned column of triangle A053120 (T-Chebyshev, rising powers, zeros omitted).
If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-12) is the number of 12-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
11-dimensional square numbers, tenth partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = sum_{i=0..n} C(n+10,i+10)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
2*a(n) is number of ways to place 10 queens on an (n+10) X (n+10) chessboard so that they diagonally attack each other exactly 45 times. The maximal possible attack number, p=binomial(k,2) =45 for k=10 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form the corresponding complete graph. - Antal Pinter, Dec 27 2015
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Milan Janjic, Two Enumerative Functions.
Index entries for linear recurrences with constant coefficients, signature (12,-66, 220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
a(n) = 2*C(n+11, 11) - C(n+10, 10). - Paul Barry, Mar 04 2003
a(n) = C(n+10,10) + 2*C(n+10,11). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = C(n+10,10)*(2n+11)/11. - Antal Pinter, Dec 27 2015
a(n) = 12*a(n-1)-66*a(n-2)+220*a(n-3)-495*a(n-4)+792*a(n-5)-924*a(n-6)+792*a(n-7)-495*a(n-8)+220*a(n-9)-66*a(n-10)+12*a(n-11)-a(n-12) for n >11. - Vincenzo Librandi, Feb 14 2016
a(n) = (2*n+11)*binomial(n+10, 10)/11. - G. C. Greubel, Dec 02 2018
From Amiram Eldar, Jan 26 2022: (Start)
Sum_{n>=0} 1/a(n) = 419751541/13230 - 2883584*log(2)/63.
Sum_{n>=0} (-1)^n/a(n) = 720896*Pi/63 - 237793798/6615. (End)
MAPLE
A057788 := proc(n)
1/39916800*(2*n+11) *(n+10) *(n+9) *(n+8) *(n+7) *(n+6) *(n+5) *(n+4) *(n+3) *(n+2) *(n+ 1) ; end proc: # R. J. Mathar, Mar 22 2011
MATHEMATICA
Table[(2*n+11)*Binomial[n+10, 10]/11, {n, 0, 40}] (* G. C. Greubel, Dec 02 2018 *)
CoefficientList[Series[(1 + x) / (1 - x)^12, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2016 *)
LinearRecurrence[{12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1}, {1, 13, 90, 442, 1729, 5733, 16744, 44200, 107406, 243542, 520676, 1058148}, 30] (* Harvey P. Dale, Sep 07 2022 *)
PROG
(PARI) Vec((1+x)/(1-x)^12+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
(Magma) [Binomial(n+10, 10)*(2*n+11)/11: n in [0..40]]; // Vincenzo Librandi, Feb 14 2016
(Sage) [(2*n+11)*binomial(n+10, 10)/11 for n in range(40)] # G. C. Greubel, Dec 02 2018
(GAP) List([0..30], n -> (2*n+11)*Binomial(n+10, 10)/11); # G. C. Greubel, Dec 02 2018
CROSSREFS
Partial sums of A054334.
Sixth column of A111125 (s=5, without leading zeros). - Wolfdieter Lang, Oct 18 2012
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 04 2000
STATUS
approved