login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057788 Expansion of (1+x)/(1-x)^12. 11
1, 13, 90, 442, 1729, 5733, 16744, 44200, 107406, 243542, 520676, 1058148, 2057510, 3848222, 6953544, 12183560, 20764055, 34512075, 56071470, 89224590, 139299615, 213696795, 322561200, 479634480, 703323660, 1018031196, 1455797448, 2058314440, 2879378332 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

1/2^10 of twelfth unsigned column of triangle A053120 (T-Chebyshev, rising powers, zeros omitted).

If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-12) is the number of 12-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007

11-dimensional square numbers, tenth partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = sum_{i=0..n} C(n+10,i+10)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009

2*a(n) is number of ways to place 10 queens on an (n+10) X (n+10) chessboard so that they diagonally attack each other exactly 45 times. The maximal possible attack number, p=binomial(k,2) =45 for k=10 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form the corresponding complete graph. - Antal Pinter, Dec 27 2015

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

Milan Janjic, Two Enumerative Functions

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (12,-66, 220,-495,792,-924,792,-495,220,-66,12,-1).

FORMULA

a(n) = 2*C(n+11, 11) - C(n+10, 10). - Paul Barry, Mar 04 2003

a(n) = C(n+10,10) + 2*C(n+10,11). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009

a(n) = C(n+10,10)*(2n+11)/11. - Antal Pinter, Dec 27 2015

a(n) = 12*a(n-1)-66*a(n-2)+220*a(n-3)-495*a(n-4)+792*a(n-5)-924*a(n-6)+792*a(n-7)-495*a(n-8)+220*a(n-9)-66*a(n-10)+12*a(n-11)-a(n-12) for n >11. - Vincenzo Librandi, Feb 14 2016

MAPLE

A057788 := proc(n)

        1/39916800*(2*n+11) *(n+10) *(n+9) *(n+8) *(n+7) *(n+6) *(n+5) *(n+4) *(n+3) *(n+2) *(n+ 1) ; end proc: # R. J. Mathar, Mar 22 2011

MATHEMATICA

s1=s2=s3=s4=s5=s6=s7=s8=s9=0; lst={}; Do[s1+=n^2; s2+=s1; s3+=s2; s4+=s3; s5+=s4; s6+=s5; s7+=s6; s8+=s7; s9+=s8; AppendTo[lst, s9], {n, 0, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)

CoefficientList[Series[(1 + x) / (1 - x)^12, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2016 *)

PROG

(PARI) Vec((1+x)/(1-x)^12+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012

(MAGMA) [Binomial(n+10, 10)*(2*n+11)/11: n in [0..40]]; // Vincenzo Librandi, Feb 14 2016

CROSSREFS

Cf. A054334, A054333, A053347, A002415, A005585, A040977, A050486.

Partial sums of A054334.

Sixth column of A111125 (s=5, without leading zeros). - Wolfdieter Lang, Oct 18 2012

Sequence in context: A161465 A162300 A161859 * A267175 A266767 A166215

Adjacent sequences:  A057785 A057786 A057787 * A057789 A057790 A057791

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 04 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 13:07 EST 2016. Contains 278875 sequences.