login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057788
Expansion of (1+x)/(1-x)^12.
11
1, 13, 90, 442, 1729, 5733, 16744, 44200, 107406, 243542, 520676, 1058148, 2057510, 3848222, 6953544, 12183560, 20764055, 34512075, 56071470, 89224590, 139299615, 213696795, 322561200, 479634480, 703323660, 1018031196, 1455797448, 2058314440, 2879378332
OFFSET
0,2
COMMENTS
1/2^10 of twelfth unsigned column of triangle A053120 (T-Chebyshev, rising powers, zeros omitted).
If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-12) is the number of 12-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
11-dimensional square numbers, tenth partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = sum_{i=0..n} C(n+10,i+10)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
2*a(n) is number of ways to place 10 queens on an (n+10) X (n+10) chessboard so that they diagonally attack each other exactly 45 times. The maximal possible attack number, p=binomial(k,2) =45 for k=10 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form the corresponding complete graph. - Antal Pinter, Dec 27 2015
FORMULA
a(n) = 2*C(n+11, 11) - C(n+10, 10). - Paul Barry, Mar 04 2003
a(n) = C(n+10,10) + 2*C(n+10,11). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = C(n+10,10)*(2n+11)/11. - Antal Pinter, Dec 27 2015
a(n) = 12*a(n-1)-66*a(n-2)+220*a(n-3)-495*a(n-4)+792*a(n-5)-924*a(n-6)+792*a(n-7)-495*a(n-8)+220*a(n-9)-66*a(n-10)+12*a(n-11)-a(n-12) for n >11. - Vincenzo Librandi, Feb 14 2016
a(n) = (2*n+11)*binomial(n+10, 10)/11. - G. C. Greubel, Dec 02 2018
From Amiram Eldar, Jan 26 2022: (Start)
Sum_{n>=0} 1/a(n) = 419751541/13230 - 2883584*log(2)/63.
Sum_{n>=0} (-1)^n/a(n) = 720896*Pi/63 - 237793798/6615. (End)
MAPLE
A057788 := proc(n)
1/39916800*(2*n+11) *(n+10) *(n+9) *(n+8) *(n+7) *(n+6) *(n+5) *(n+4) *(n+3) *(n+2) *(n+ 1) ; end proc: # R. J. Mathar, Mar 22 2011
MATHEMATICA
Table[(2*n+11)*Binomial[n+10, 10]/11, {n, 0, 40}] (* G. C. Greubel, Dec 02 2018 *)
CoefficientList[Series[(1 + x) / (1 - x)^12, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2016 *)
LinearRecurrence[{12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1}, {1, 13, 90, 442, 1729, 5733, 16744, 44200, 107406, 243542, 520676, 1058148}, 30] (* Harvey P. Dale, Sep 07 2022 *)
PROG
(PARI) Vec((1+x)/(1-x)^12+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
(Magma) [Binomial(n+10, 10)*(2*n+11)/11: n in [0..40]]; // Vincenzo Librandi, Feb 14 2016
(Sage) [(2*n+11)*binomial(n+10, 10)/11 for n in range(40)] # G. C. Greubel, Dec 02 2018
(GAP) List([0..30], n -> (2*n+11)*Binomial(n+10, 10)/11); # G. C. Greubel, Dec 02 2018
CROSSREFS
Partial sums of A054334.
Sixth column of A111125 (s=5, without leading zeros). - Wolfdieter Lang, Oct 18 2012
Sequence in context: A161465 A162300 A161859 * A267175 A266767 A166215
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 04 2000
STATUS
approved