Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 Sep 07 2022 12:19:52
%S 1,13,90,442,1729,5733,16744,44200,107406,243542,520676,1058148,
%T 2057510,3848222,6953544,12183560,20764055,34512075,56071470,89224590,
%U 139299615,213696795,322561200,479634480,703323660,1018031196,1455797448,2058314440,2879378332
%N Expansion of (1+x)/(1-x)^12.
%C 1/2^10 of twelfth unsigned column of triangle A053120 (T-Chebyshev, rising powers, zeros omitted).
%C If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-12) is the number of 12-subsets of X intersecting both Y and Z. - _Milan Janjic_, Sep 08 2007
%C 11-dimensional square numbers, tenth partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = sum_{i=0..n} C(n+10,i+10)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
%C 2*a(n) is number of ways to place 10 queens on an (n+10) X (n+10) chessboard so that they diagonally attack each other exactly 45 times. The maximal possible attack number, p=binomial(k,2) =45 for k=10 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form the corresponding complete graph. - _Antal Pinter_, Dec 27 2015
%H T. D. Noe, <a href="/A057788/b057788.txt">Table of n, a(n) for n = 0..1000</a>
%H Milan Janjic, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>.
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66, 220,-495,792,-924,792,-495,220,-66,12,-1).
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.
%F a(n) = 2*C(n+11, 11) - C(n+10, 10). - _Paul Barry_, Mar 04 2003
%F a(n) = C(n+10,10) + 2*C(n+10,11). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
%F a(n) = C(n+10,10)*(2n+11)/11. - _Antal Pinter_, Dec 27 2015
%F a(n) = 12*a(n-1)-66*a(n-2)+220*a(n-3)-495*a(n-4)+792*a(n-5)-924*a(n-6)+792*a(n-7)-495*a(n-8)+220*a(n-9)-66*a(n-10)+12*a(n-11)-a(n-12) for n >11. - _Vincenzo Librandi_, Feb 14 2016
%F a(n) = (2*n+11)*binomial(n+10, 10)/11. - _G. C. Greubel_, Dec 02 2018
%F From _Amiram Eldar_, Jan 26 2022: (Start)
%F Sum_{n>=0} 1/a(n) = 419751541/13230 - 2883584*log(2)/63.
%F Sum_{n>=0} (-1)^n/a(n) = 720896*Pi/63 - 237793798/6615. (End)
%p A057788 := proc(n)
%p 1/39916800*(2*n+11) *(n+10) *(n+9) *(n+8) *(n+7) *(n+6) *(n+5) *(n+4) *(n+3) *(n+2) *(n+ 1) ; end proc: # _R. J. Mathar_, Mar 22 2011
%t Table[(2*n+11)*Binomial[n+10, 10]/11, {n,0,40}] (* _G. C. Greubel_, Dec 02 2018 *)
%t CoefficientList[Series[(1 + x) / (1 - x)^12, {x, 0, 40}], x] (* _Vincenzo Librandi_, Feb 14 2016 *)
%t LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{1,13,90,442,1729,5733,16744,44200,107406,243542,520676,1058148},30] (* _Harvey P. Dale_, Sep 07 2022 *)
%o (PARI) Vec((1+x)/(1-x)^12+O(x^99)) \\ _Charles R Greathouse IV_, Sep 23 2012
%o (Magma) [Binomial(n+10,10)*(2*n+11)/11: n in [0..40]]; // _Vincenzo Librandi_, Feb 14 2016
%o (Sage) [(2*n+11)*binomial(n+10, 10)/11 for n in range(40)] # _G. C. Greubel_, Dec 02 2018
%o (GAP) List([0..30], n -> (2*n+11)*Binomial(n+10, 10)/11); # _G. C. Greubel_, Dec 02 2018
%Y Cf. A053120, A054334, A054333, A053347, A002415, A005585, A040977, A050486.
%Y Partial sums of A054334.
%Y Sixth column of A111125 (s=5, without leading zeros). - _Wolfdieter Lang_, Oct 18 2012
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Nov 04 2000