login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056674
Number of squarefree divisors which are not unitary. Also number of unitary divisors which are not squarefree.
4
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 2, 1, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 2, 0, 0, 0, 2, 0, 2, 2, 3, 0, 0, 0, 2, 0
OFFSET
1,12
COMMENTS
Numbers of unitary and of squarefree divisors are identical, although the 2 sets are usually different, so sizes of parts outside overlap are also equal to each other.
FORMULA
a(n) = A034444(n) - A056671(n) = A034444(n) - A000005(A055231(n)) = A034444(n) - A000005(A007913(n)/A055229(n)).
EXAMPLE
For n = 252, it has 18 divisors, 8 are unitary, 8 are squarefree, 2 belong to both classes, so 6 are squarefree but not unitary, thus a(252) = 6. The set {2,3,14,21,42} forms squarefree but non-unitary while the set {4,9,36,28,63,252} of same size gives the set of not squarefree but unitary divisors.
MATHEMATICA
Table[DivisorSum[n, 1 &, And[SquareFreeQ@ #, ! CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 19 2017 *)
f[p_, e_] := If[e == 1, 2, 1]; a[1] = 0; a[n_] := 2^Length[fct = FactorInteger[n]] - Times @@ (f @@@ fct); Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
PROG
(PARI)
A034444(n) = (2^omega(n));
A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ Charles R Greathouse IV, Aug 13 2013
A055231(n) = n/A057521(n);
A056674(n) = (A034444(n) - numdiv(A055231(n)));
\\ Or:
A055229(n) = { my(c=core(n)); gcd(c, n/c); }; \\ Charles R Greathouse IV, Nov 20 2012
A056674(n) = ((2^omega(n)) - numdiv(core(n)/A055229(n)));
\\ Antti Karttunen, Jul 19 2017
(PARI) a(n) = {my(f = factor(n), e = f[, 2]); 2^omega(f) - prod(i = 1, #e, if(e[i] == 1, 2, 1)); } \\ Amiram Eldar, Jul 24 2024
(Python)
from sympy import gcd, primefactors, divisor_count
from sympy.ntheory.factor_ import core
def a055229(n):
c=core(n)
return gcd(c, n//c)
def a056674(n): return 2**len(primefactors(n)) - divisor_count(core(n)//a055229(n))
print([a056674(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 19 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Aug 10 2000
STATUS
approved