OFFSET
0,2
COMMENTS
Apparently identical to A111386! Is this a theorem? - Klaus Brockhaus, Jul 21 2009
For n > 1, number of necklaces with n-1 beads and 5 colors that are the same when turned over and hence have reflection symmetry. - Herbert Kociemba, Nov 24 2016
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
FORMULA
a(n+2) = 5*a(n), a(0)=1, a(2)=3.
G.f.: (1+3*x)/(1-5*x^2); a(n) = 5^(n/2)(1/2 + 3*sqrt(5)/10 + (1/2 - 3*sqrt(5)/10)(-1)^n). - Paul Barry, Mar 19 2004
2nd inverse binomial transform of Fibonacci(3n+2). - Paul Barry, Apr 16 2004
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 3^((1 - (-1)^n)/2) * 5^((2*n + (-1)^n-1)/4). - Bruno Berselli, Mar 24 2011
a(n+1) = (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 2, where k=5 is the number of possible colors. - Robert A. Russell, Sep 22 2018
E.g.f.: cosh(sqrt(5)*x) + 3*sinh(sqrt(5)*x)/sqrt(5). - Stefano Spezia, Jun 06 2023
MAPLE
A056487:=n->3^((1-(-1)^n)/2)*5^((2*n+(-1)^n-1)/4): seq(A056487(n), n=0..40); # Wesley Ivan Hurt, Nov 24 2016
MATHEMATICA
Table[3^((1 - (-1)^n)/2)*5^((2*n + (-1)^n - 1)/4), {n, 0, 30}] (* Wesley Ivan Hurt, Nov 24 2016 *)
CoefficientList[Series[(1 + 3 x)/(1 - 5 x^2), {x, 0, 31}], x] (* Michael De Vlieger, Nov 24 2016 *)
LinearRecurrence[{0, 5}, {1, 3}, 35] (* Vincenzo Librandi, Nov 25 2016 *)
k=5; Table[(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2]) / 2, {n, -1, 30}] (* Robert A. Russell, Sep 21 2018 *)
PROG
(Magma) [n le 2 select 2*n-1 else 5*Self(n-2): n in [1..28]]; // Bruno Berselli, Mar 24 2011
(PARI) a(n)=if(n%2, 3, 1)*5^(n\2) \\ Charles R Greathouse IV, Oct 07 2015
(Python)
def A056487(n): return 5**(n>>1)*(3 if n&1 else 1) # Chai Wah Wu, Oct 27 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Changed one 'even' to 'odd' in the definition. - R. J. Mathar, Oct 06 2010
STATUS
approved