login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056486
a(n) = (9*2^n + (-2)^n)/4 for n>0.
8
4, 10, 16, 40, 64, 160, 256, 640, 1024, 2560, 4096, 10240, 16384, 40960, 65536, 163840, 262144, 655360, 1048576, 2621440, 4194304, 10485760, 16777216, 41943040, 67108864, 167772160, 268435456, 671088640, 1073741824, 2684354560, 4294967296, 10737418240
OFFSET
1,1
COMMENTS
Old name was: "Number of periodic palindromes using a maximum of four different symbols".
Number of necklaces with n beads and 4 colors that are the same when turned over and hence have reflection symmetry. - Herbert Kociemba, Nov 24 2016
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
FORMULA
a(n) = 4^((n+1)/2) for n odd, a(n) = 4^(n/2)*5/2 for n even.
From Colin Barker, Jul 08 2012: (Start)
a(n) = 4*a(n-2).
G.f.: 2*x*(2+5*x)/((1-2*x)*(1+2*x)). (End)
G.f.: -1 + (1+4*x+6*x^2)/(1-4*x^2). - Herbert Kociemba, Nov 24 2016
E.g.f.: 5*sinh(x)^2 + 2*sinh(2*x). - Ilya Gutkovskiy, Nov 24 2016
a(n) = ( 4^floor((n+1)/2) + 4^ceiling((n+1)/2) )/2. - Robert A. Russell, Sep 21 2018
EXAMPLE
G.f. = 4*x + 10*x^2 + 16*x^3 + 40*x^4 + 64*x^5 + 160*x^6 + 256*x^7 + 640*x^8 + ...
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
MAPLE
A056486:=n->(9*2^n + (-2)^n)/4: seq(A056486(n), n=1..50); # Wesley Ivan Hurt, Nov 24 2016
MATHEMATICA
CoefficientList[Series[-1+(1+4*x+6*x^2)/(1-4*x^2), {x, 0, 30}], x] (* Herbert Kociemba, Nov 24 2016 *)
k=4; Table[(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2]) / 2, {n, 1, 30}] (* Robert A. Russell, Sep 21 2018 *)
PROG
(Magma) [(9*2^n + (-2)^n)/4 : n in [1..50]]; // Wesley Ivan Hurt, Nov 24 2016
(PARI) a(n) = (9*2^n+(-2)^n)/4; \\ Altug Alkan, Sep 21 2018
(SageMath) [2^(n-2)*(9+(-1)^n) for n in range(1, 51)] # G. C. Greubel, Mar 23 2024
CROSSREFS
Column 4 of A284855.
Sequence in context: A163389 A172126 A025621 * A233452 A061682 A246882
KEYWORD
nonn,easy
EXTENSIONS
Better name from Ralf Stephan, Jul 18 2013
STATUS
approved