OFFSET
1,1
COMMENTS
Old name was: "Number of periodic palindromes using a maximum of four different symbols".
Number of necklaces with n beads and 4 colors that are the same when turned over and hence have reflection symmetry. - Herbert Kociemba, Nov 24 2016
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,4).
FORMULA
a(n) = 4^((n+1)/2) for n odd, a(n) = 4^(n/2)*5/2 for n even.
From Colin Barker, Jul 08 2012: (Start)
a(n) = 4*a(n-2).
G.f.: 2*x*(2+5*x)/((1-2*x)*(1+2*x)). (End)
G.f.: -1 + (1+4*x+6*x^2)/(1-4*x^2). - Herbert Kociemba, Nov 24 2016
E.g.f.: 5*sinh(x)^2 + 2*sinh(2*x). - Ilya Gutkovskiy, Nov 24 2016
a(n) = ( 4^floor((n+1)/2) + 4^ceiling((n+1)/2) )/2. - Robert A. Russell, Sep 21 2018
EXAMPLE
G.f. = 4*x + 10*x^2 + 16*x^3 + 40*x^4 + 64*x^5 + 160*x^6 + 256*x^7 + 640*x^8 + ...
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
MAPLE
MATHEMATICA
CoefficientList[Series[-1+(1+4*x+6*x^2)/(1-4*x^2), {x, 0, 30}], x] (* Herbert Kociemba, Nov 24 2016 *)
k=4; Table[(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2]) / 2, {n, 1, 30}] (* Robert A. Russell, Sep 21 2018 *)
PROG
(Magma) [(9*2^n + (-2)^n)/4 : n in [1..50]]; // Wesley Ivan Hurt, Nov 24 2016
(PARI) a(n) = (9*2^n+(-2)^n)/4; \\ Altug Alkan, Sep 21 2018
(SageMath) [2^(n-2)*(9+(-1)^n) for n in range(1, 51)] # G. C. Greubel, Mar 23 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better name from Ralf Stephan, Jul 18 2013
STATUS
approved